Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chili peppers and inflammation: Researchers unravel mechanism of pain sensitivity

26.09.2002


Scientists at Massachusetts General Hospital (MGH) have discovered a common component to the burning sensation produced by chili peppers and the pain associated with arthritis. The finding, published in the September 26 issue of Neuron, could help scientists devise new strategies to block the pain hypersensitivity associated with inflammation.



"The receptor activated by chili peppers in the mouth and other tissues also increases in the terminals of sensory neurons in the skin after inflammation, and this contributes to pain hypersensitivity," says Clifford Woolf, MD, PhD, director of the Neural Plasticity Research Group in the Department of Anesthesia and Critical Care at MGH. A receptor is a protein that transports a chemical signal into a cell.

Woolf and lead author Ru-Rong Ji, PhD, also of the MGH Neural Plasticity Research Group, found that the increased production of the receptor following inflammation is mediated by a signal molecule called p38, located within sensory neurons. The chili pepper receptor, which is technically called TRPV1, responds to capsaicin, the chemical that is responsible for the "hot" in peppers. It also responds to actual heat and to low pH, a condition that occurs with inflammation.


"With these findings, we’re starting to understand why patients with arthritis or other inflammatory conditions are likely to have increased pain and sensitivity to heat," says Woolf. He and his research team were surprised to find that the activation of p38 can cause a twenty-fold increase in the amount of TRPV1 protein in the skin but not in the activity of the gene coding for TRPV1.

"This means that the chili pepper receptor is not being regulated by the gene being switched on but by more protein being produced, an unexpected form of regulation," says Ji. He also notes that their findings will open up new options for pain management. "We could use an inhibitor to p38 to block the increase in TRPV1, therefore blocking pain in patients who suffer from many diseases and conditions that involve inflammation."

Following inflammation, the activation of p38 is very precise. The scientists found that it is caused by a specific growth factor signal acting on a particular subset of pain sensory neurons. There are a variety of pain sensations that create different changes within neurons, and all of the signals that are generated have not yet been identified. Each new discovery, like the current finding by the MGH researchers, sheds light on these complex pathways and brings new treatment strategies closer.

Susan McGreevey | EurekAlert!
Further information:
http://www.mgh.harvard.edu/

More articles from Health and Medicine:

nachricht Purdue cancer identity technology makes it easier to find a tumor's 'address'
16.11.2018 | Purdue University

nachricht Microgel powder fights infection and helps wounds heal
14.11.2018 | Michigan Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>