Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jackson researchers identify a gene implicated in oxidative stress and neurodegeneration

26.09.2002


Oxidative stress is implicated in a fast-growing list of human conditions, from the superficial (e.g., wrinkled skin) to the deadly: diseases such as cancer, heart disease and neurodegenerative disorders including Lou Gehrig’s disease (amyotrophic lateral sclerosis or ALS).



Researchers at The Jackson Laboratory announced that they have located a gene that protects certain brain and retinal neurons from oxidative stress, and prevents neurodegeneration.

Many normal metabolic functions produce free radicals--highly unstable forms of oxygen. Despite their notoriety, these molecules in fact have several beneficial roles, such as helping white blood cells attack bacteria, viruses and virus-damaged cells. Oxidative stress occurs when the amount of free radicals exceeds the normal antioxidant capacity of a cell, leading to cell damage.


The research team, headed by Staff Scientist Susan Ackerman, Ph.D., discovered that mice from a strain called harlequin have a mutation in the apoptosis-inducing factor (Aif) gene, causing a severe reduction in AIF production. The AIF protein serves as a scavenger of free radicals in certain brain and retinal neurons. Because harlequin mice have much lower levels of AIF, neurons in these mice undergo oxidative stress. The researchers demonstrate that oxidative stress causes neurons to duplicate their DNA in a process known as re-entering the cell cycle. But the neurons cannot successfully divide. They die in the attempt.

The results of Dr. Ackerman’s team’s work, published in the journal Nature, provide a genetic model of neurodegeneration mediated by oxidative stress. They also demonstrate a direct connection between cell cycle re-entry and oxidative stress in an aging central nervous system.

To date, ALS is the one neurodegenerative disorder known to be caused by oxidative damage to neurons. However, oxidative stress has been identified as a possible cause of several later-onset neurodegenerative diseases, and there are also indications that the diseased neurons of Alzheimer’s patients have duplicated their DNA prior to dying.

The harlequin mouse provides the first model for studying the role of oxidative stress on aberrant cell cycle reentry and subsequent death of neurons.

Joyce Peterson | EurekAlert!
Further information:
http://www.jax.org/

More articles from Health and Medicine:

nachricht Protection for pacemakers
21.11.2019 | ETH Zurich

nachricht Rapid emergence of antibiotic resistance during standard therapy
21.11.2019 | Christian-Albrechts-Universität zu Kiel

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

Scientists first to develop rapid cell division in marine sponges

21.11.2019 | Life Sciences

First detection of gamma-ray burst afterglow in very-high-energy gamma light

21.11.2019 | Physics and Astronomy

Research team discovers three supermassive black holes at the core of one galaxy

21.11.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>