Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Heart size and function uncoupled by researchers

20.09.2002


Proteins that work in immune system also play fundamental role in heart size and function



Researchers have identified two proteins that play fundamental roles in heart size and function and have genetically uncoupled them, a discovery the scientists hope will lead to better treatments for those with cardiovascular disease.

"We initially had a hint that the protein called PTEN controls cell size," says Josef Penninger, professor of medical biophysics and immunology at U of T, and lead author of a paper in the Sept. 20 issue of Cell. "We knew that cardiovascular disease triggers increased heart size and eventually heart failure so we set out to figure out if PTEN also has a function in the heart. We found that PTEN is absolutely critical to how large our hearts become. But to find out that it also plays a major part in controlling heart muscle pumping and function was completely novel and unexpected."


The PTEN and PI3K alpha and gamma proteins work in the body’s immune system. PTEN is also a major tumor suppressor for many cancers while PI3K gamma is known to control migration of white blood cells. Using genetically engineered mice, Penninger led an international team of researchers to examine what would happen if either of these proteins were removed from hearts.

Unchecked, PI3K alpha produces something that makes the heart bigger, Penninger explains. PTEN works as a negative regulator by shutting it down. When the researchers removed PTEN, the mice developed huge hearts; when production of the PI3K alpha protein was shut down, the hearts were only half-size. These two proteins work together to control heart size.

The researchers were further intrigued when they examined how the large and small hearts functioned. They found that the PI3K gamma protein, which governs how the heart muscle contracts and pumps, also works with PTEN in determining efficient heart function.

"The data is black and white," says Penninger. "When we knocked out PTEN, we had a huge heart and less function; when we knocked out PI3K gamma, we had normal heart size and much better function. With both of these proteins shut down, we had huge hearts and much better function. When we took out PI3K alpha, the mice had tiny hearts but normal function, and when we took out both PTEN and PI3K alpha, the mice had tiny hearts and heart failure. With these genes we can determine heart size and can genetically control how well our hearts pump, irrespective of the heart being normal or enlarged."

According to the World Health Organization, cardiovascular disease will be the most common cause of death within 20 years. This research goes directly to helping alleviate this disease, the researchers say. Every patient with heart or cardiovascular disease goes through a stage of heart enlargement. Those with hypertension, for example, need their heart to pump and contract more; as a result, the heart muscle enlarges to compensate for the extra work. At a certain point, however, this compensation doesn’t work anymore and the heart starts to fail.

The scientists hope that this research will form the basis for better treatments for people with chronic heart failure or cardiovascular disease. "The problem now is that there is no drug which maintains the pumping function of the heart," says Penninger. "We found the proteins that genetically control this. So the hope is that if you can shut down PI3K gamma, the heart will function much better after a heart attack or chronic heart failure, even if the patient has an enlarged heart."

The team of researchers who worked on this study are: Professor Peter Backx of physiology and medicine at U of T’s Heart & Stroke/Richard Lewar Centre; Michael Crackower, a post-doctoral fellow in Penninger’s lab; Gavin Oudit, a clinician scientist in Backx’s lab; Ivona Kozieradzki, Renu Sarao, Hai-Ying Cheng and Antonio Oliveira-dos-Santos of medical biophysics and immunology at U of T; Hui Sun of physiology and medicine at U of T’s Heart & Stroke/Richard Lewar Centre; and scientists from Japan, Italy, the United States and Switzerland.

Penninger was supported by a Canada Research Chair in Cell Biology, the National Cancer Institute of Canada and the Institute for Molecular Biotechnology of the Austrian Academy of Sciences. Crackower was supported in part by a Canadian Institutes of Health Research fellowship. The study was also supported by AMGEN Inc., the American Heart Association and the National Institutes of Health.

CONTACT:

U of T Public Affairs, ph: (416) 978-5949; email: jf.wong@utoronto.ca

Janet Wong | EurekAlert!
Further information:
http://www.newsandevents.utoronto.ca/bin3/020919a.asp

More articles from Health and Medicine:

nachricht Lung images of twins with asthma add to understanding of the disease
06.12.2019 | University of Western Ontario

nachricht Between Arousal and Inhibition
06.12.2019 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

Im Focus: McMaster researcher warns plastic pollution in Great Lakes growing concern to ecosystem

Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.

In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Solving the mystery of carbon on ocean floor

06.12.2019 | Earth Sciences

Chip-based optical sensor detects cancer biomarker in urine

06.12.2019 | Life Sciences

A platform for stable quantum computing, a playground for exotic physics

06.12.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>