Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penn study may explain cliche of ’hot-headed’ men

18.09.2002


There is a sound neurological basis for the cliché that men are more aggressive than women, according to new findings by scientists at the University of Pennsylvania School of Medicine.



Using magnetic resonance imaging (MRI) scans, the Penn scientists illustrated for the first time that the relative size of the sections of the brain known to constrain aggression and monitor behavior is larger in women than in men.

The research, by Ruben C. Gur, PhD, and Raquel E. Gur, MD, PhD, and their colleagues in Penn’s Department of Psychiatry and the Department of Epidemiology, is published in the recent issue of the Journal of the Cerebral Cortex.


The findings provide a new research path for therapies that may eventually help psychiatric patients control inappropriate aggression and dangerous patterns of impulsive behavior. They also bolster previous work by the Gurs demonstrating that although some gender differences develop as result of adaptive patterns of socialization, other distinctions are biologically based and probably innate.

"As scientists become more capable of mapping the functions of activity in various parts of the brain, we are discovering a variety of differences in the way men and women’s brains are structured and how they operate," said Ruben Gur, first author of the study.

"Perhaps the most salient emotional difference between men and women, dwarfing all other differences, is aggression," he said. "This study affords us neurobiological evidence that women may have a better brain capacity than men for actually ’censoring’ their aggressive and anger responses."

In the Gurs’ work, they relied on established scientific findings that human emotions are stimulated and regulated through a network that extends through much of the limbic system at the base of the brain (the region encompassing the amygdala, hypothalamus and mesocorticolimbic dopamine systems), and then upward and forward into the region around the eyes and forehead (the orbital and dorsolateral frontal area), and under the temples (the parietal and temporal cortex).

The amygdala is involved in emotional behavior related to arousal and excitement, while the orbital frontal region is involved in the modulation of aggression.

The Gurs’ study measured the ratio of orbital to amygdala volume in a sample of 116 right-handed, healthy adults younger than 50 years of age; 57 subjects were male and 59 were female. Once the scientists adjusted their measurements to allow for the difference between men and women in physical size, they found that the women’s brains had a significantly higher volume of orbital frontal cortex in proportion to amygdala volume than did the brains of the men.

"Because men and women differ in the way they process the emotions associated with perception, experience, expression, and most particularly in aggression, our belief is that the proportional difference in size in the region of the brain that governs behavior, compared to the region related to impulsiveness, may be a major factor in determining what is often considered ’gendered-related’ behavior," Raquel Gur said.


Others Penn investigators participating in the study were Faith Gunning-Dixon, PhD, and Warren B. Bilker, PhD, of the Department of Epidemiology.

The study was funded by a grant from the National Institutes of Health

Ellen O’Brien | EurekAlert1
Further information:
http://www.med.upenn.edu/

More articles from Health and Medicine:

nachricht The genes are not to blame
20.07.2018 | Technische Universität München

nachricht Targeting headaches and tumors with nano-submarines
20.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>