Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene therapy promising for preventing restenosis

17.09.2002


An experimental gene transfer technique shut down cell re-growth in the arteries’ interior lining and reduced the inflammatory response – two main causes of re-narrowing of newly opened blood vessels, researchers report in today’s rapid access issue of Circulation: Journal of the American Heart Association.



The process that opens blocked blood vessels – either inflating a tiny balloon to force open the narrowed vessel (angioplasty) or inserting a tiny mesh tube called a stent to serve as a scaffold to widen the opening – can damage the delicate lining of blood vessels, says Seppo Yla-Herttuala, M.D., Ph.D., professor of molecular medicine at the University of Kuoppio, Finland.

"This damage – rather than a progression of heart disease – is believed to cause rapid growth of new cells in the vessel wall, which can cause re-blockage, or restenosis, in the vessel," he says.


Earlier studies suggested that a key player in this process is a biological reaction called oxidative stress. When the endothelium – the blood vessel lining – is damaged, it sends a signal that increases oxidative stress, which means that the body produces more free radicals. The oxygen derivatives known as free radicals are very active chemical compounds "that can destroy almost anything," he says.

One of the most common of these compounds is the superoxide anion, a free radical that increases when the endothelium is damaged. At the same time, endothelial damage causes a decrease in concentrations of vascular superoxide dismutase or SOD, an enzyme that works inside and outside cells as a powerful antioxidant to control levels of free radicals. Yla-Herttuala and his colleagues theorized that by injecting the gene for extra cellular superoxide dismutase (EC-SOD) into damaged blood vessels, they could control free radical damage and thereby short-circuit the process that leads to restenosis.

In the study they tested this hypothesis by using a deactivated virus to deliver EC-SOD to cells in the arterial walls of animals. Researchers treated 18 New Zealand white rabbits with the gene and 18 with placebo. The animals were analyzed two and four weeks later to determine if the gene therapy had worked. At each follow-up the researchers confirmed that the gene transfer was successful.

At two weeks the EC-SOD group had 10-fold fewer macrophages (markers of inflammation) than the control group and 20-fold less macrophage accumulation at four weeks. Moreover, there was a significant reduction in superoxide anion production in the active gene transfer group, he says.

"EC-SOD has already been purified and commercially produced. The virus that we used has been similarly tested, so we expect that it will only take about two years to complete pre-clinical studies before we can begin human trials," Yla-Herttuala says.

In human studies, EC-SOD would be transferred "after a stent is placed and it would be delivered in the stented area and in the areas immediately outside the stent. The study demonstrates that the enzyme is also secreted by the cells after transfer so that it affects both the immediate site of transfer and the areas within a few centimeters of that site."

Co-authors were Mikko O. Laukkanen, Ph.D.; Antti Kivelä, M.D.; Tuomas Rissanen, B.M.; Juha Rutanen, B.M.; Minna K. Karkkainen, M.Sc.; Olli Leppanen, M.D.; and Jan Hinrich Brasen, M.D., Ph.D.

Carole Bullock | EurekAlert!
Further information:
http://www.americanheart.org/

More articles from Health and Medicine:

nachricht Inselspital: Fewer CT scans needed after cerebral bleeding
20.03.2019 | Universitätsspital Bern

nachricht Building blocks for new medications: the University of Graz is seeking a technology partner
19.03.2019 | Karl-Franzens-Universität Graz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>