Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research reveals a more complete picture of breast tissue

17.09.2002


A team of Dartmouth engineers and doctors are trying to find more comfortable and comprehensive ways to examine breast tissue to better detect and diagnose breast cancer. The Dartmouth group is simultaneously developing and testing four different breast imaging techniques.



The multidisciplinary Dartmouth team includes researchers from the Thayer School of Engineering and Dartmouth Medical School, and they are working under the auspices of the Norris Cotton Cancer Center and the department of radiology at Dartmouth-Hitchcock Medical Center. Halfway through their five-year, $7 million grant from the National Cancer Institute to study four techniques for breast imaging, the group is learning a great deal about breast tissue structure and behavior through magnetic resonance elastography (MRE), electrical impedance spectral imaging (EIS), microwave imaging spectroscopy (MIS), and near infrared (NIR) spectral imaging.

It’s the combination of these four techniques that sets the Dartmouth program apart. Their rationale is that one of the methods by itself may not provide the complete picture, but by using more than one technique, there should be added value.


"I think we’re the only group looking at these four methods simultaneously," says Keith Paulsen, engineering professor and one of the principal investigators with the Breast Imaging Project.

By collaborating across disciplines, the researchers have been able to take prototype equipment from the drawing board, to the laboratory, to the patient relatively quickly.

"The research is preliminary, but we are progressing," says Steven Poplack, associate professor of radiology and of obstetrics and gynecology. "We’re still gathering basic information about the clinical characteristics of normal breast tissue. Once we know what’s normal, we can then start working on recognizing what’s abnormal."

The new imaging methods are not invasive nor particularly uncomfortable for participants, and they all provide more detailed information about different properties of breast tissue.

"We hope our research can answer some of the anatomical and physiological questions," says Paulsen. "Our data provides quantitative information, and we hope to determine a threshold value that indicates an abnormality."

The four different techniques:

  • MRE: Using a magnetic resonance machine (the same one used in MRI exams), this test measures tissue hardness or elasticity. While in "the magnet," the breast tissue vibrates 100 times a second with very small amplitudes of less than a millimeter to determine how the tissue moves. The exam provides an image with corresponding numerical values for each portion of the breast.
  • EIS: This painless test uses a very low voltage electrode system to examine how the breast tissue conducts and stores electricity. Living cell membranes carry an electric potential that affect the way a current flows, and different cancer cells have different electrical characteristics.
  • MIS: This exam involves the propagation of very low levels (1000 times less than a cell phone) of microwave energy through breast tissue to measure electrical properties. This technique is particularly sensitive to water. Generally, tumors have been found to have more water and blood than regular tissue.
  • NIR: Infrared light is sensitive to blood, so by sending infrared light through breast tissue with a fiber optic array, the researchers are able to locate and quantify regions of oxygenated and deoxygenated hemoglobin. This might help detect early tumor growth and characterize the stage of a tumor by learning about its vascular makeup. Different levels of blood vessel activity in a tumor influence the effectiveness of treatment, so knowing the vascularity stage of a tumor should help design better treatment regimes.

During the first two and a half years of this five-year National Cancer Institute grant, the group has made significant progress on the technical aspects of the imaging techniques. They have improved the tools and manner of delivery so the exams are more comfortable for the participants.

For the next two and a half years, the researchers will focus on a controlled trial with 150 subjects. The goal is to rigorously test the four techniques and gather data to inform the detection of abnormalities and their subsequent diagnoses.

Sue Knapp | EurekAlert!
Further information:
http://www.dartmouth.edu/~news/releases/sept02/imaging.shtml

More articles from Health and Medicine:

nachricht Diabetes mellitus: A risk factor for early colorectal cancer
27.05.2020 | Nationales Centrum für Tumorerkrankungen (NCT) Heidelberg

nachricht Ultra-thin fibres designed to protect nerves after brain surgery
27.05.2020 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Black nitrogen: Bayreuth researchers discover new high-pressure material and solve a puzzle of the periodic table

29.05.2020 | Materials Sciences

Argonne researchers create active material out of microscopic spinning particles

29.05.2020 | Materials Sciences

Smart windows that self-illuminate on rainy days

29.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>