Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Queen’s invention connects brain functioning to limb control

10.09.2002


Pilot project for stroke victims to begin this fall



A Queen’s neuroscientist’s invention to help understand the role of the brain in arm and leg movement will dramatically improve the assessment and rehabilitation of stroke and spinal cord victims. It will also help lay the groundwork for development of neural prostheses that can re-activate paralyzed limbs.

Dr. Stephen Scott’s unique mathematical model, combined with his new experimental device, KINARM (Kinesiological Instrument for Normal and Altered Reaching Movement), enables researchers for the first time to objectively quantify and manipulate the mechanics of limb movement in multi-joint motor tasks. This device has already generated several new observations on how the brain coordinates limb movements.


In a pilot project to begin this fall at St. Mary’s by the Lake Hospital, the device will be used to quantify motor function of stroke patients. Motor patterns will be examined first for a number of simple tasks while subjects maintain fixed arm postures, then for more sophisticated tasks where they learn to make reaching movements while the robot applies complex novel loads to assess their ability to learn new motor skills. The long-term goal is to identify which tasks patients can and cannot perform, and to create "fingerprints" to aid in the diagnosis and classification of motor dysfunctions, as well as to guide future directions for therapy.

"We needed a different experimental paradigm to understand how neurons in the brain are involved in controlling movement," says Dr. Scott. "Once you’ve built the technology, the rest becomes much easier." That’s why he spent two years creating the recently-patented robotic device, KINARM, which provides quantitative, objective data required to assess performance and identify dysfunctions.

To be used at Western, University of Chicago
The team has also installed a KINARM system at the University of Western Ontario, and is currently developing one for the University of Chicago. "We hope to give other researchers an opportunity to use this technology in answering questions about limb movement that couldn’t be posed before," says Dr. Scott.

Patented in 2000 through Queen’s technology transfer office, PARTEQ Innovations, KINARM has hinge joints aligned with a person’s shoulder and elbow allowing horizontal arm movements, and a computer projection system that provides virtual targets in the plane of the arm. Each joint can be manipulated independently, with different loads added selectively. This allows the device to independently manipulate the mechanics of the shoulder and elbow joints during multi-joint tasks.

"Now that we’re learning how the brain organizes information related to movement and motor control, we can take that information into the clinic and start to look at different patient populations to develop diagnostic tools and provide quantitative information on what the specific deficits are," says Dr. Scott. "That helps to both identify sub-groups of different diseases or deficits, and to guide rehabilitation."

Nancy Dorrance | EurekAlert!
Further information:
http://www.queensu.ca/

More articles from Health and Medicine:

nachricht A step closer to cancer precision medicine
15.11.2019 | University of Helsinki

nachricht Can 'smart toilets' be the next health data wellspring?
14.11.2019 | Morgridge Institute for Research

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

Im Focus: Distorted Atoms

In two experiments performed at the free-electron laser FLASH in Hamburg a cooperation led by physicists from the Heidelberg Max Planck Institute for Nuclear physics (MPIK) demonstrated strongly-driven nonlinear interaction of ultrashort extreme-ultraviolet (XUV) laser pulses with atoms and ions. The powerful excitation of an electron pair in helium was found to compete with the ultrafast decay, which temporarily may even lead to population inversion. Resonant transitions in doubly charged neon ions were shifted in energy, and observed by XUV-XUV pump-probe transient absorption spectroscopy.

An international team led by physicists from the MPIK reports on new results for efficient two-electron excitations in helium driven by strong and ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

Observing changes in the chirality of molecules in real time

15.11.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>