Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Kidney disease in diabetics relates to insulin’s effectiveness, say Pittsburgh researchers

02.09.2002

Insulin resistance, a condition commonly associated with the development of type 2 diabetes, is likely a major cause of kidney disease, or nephropathy, in people with type 1 diabetes, according to study results published by University of Pittsburgh Graduate School of Public Health (GSPH) researchers in the September issue of Kidney International, a journal of the International Society of Nephrology. "Kidney disease is a major lethal complication for people with diabetes, particularly those with type 1 diabetes, and until now there has been no clear explanation for its cause beyond blood sugar itself," said principal investigator Trevor Orchard, M.D., professor and acting chair, department of epidemiology, GSPH. "We now suspect that reducing or preventing insulin resistance, possibly through exercise, weight loss and drugs, may help people with type 1 diabetes avoid nephropathy."

The study analyzed data from the Pittsburgh Epidemiology of Diabetes Complication Study (PEDCS), a 10-year prospective investigation based on a cohort of adults with type 1, or childhood-onset, diabetes. Of the 658 subjects in PEDCS, 485 did not have nephropathy at baseline and were followed for the current study.

Fifty-six of the 485 subjects developed nephropathy during either the first five years of follow-up, or during years 6-10. Researchers found that in all cases, strong relationships existed between nephropathy and insulin resistance throughout follow up, unlike other risk factors such as blood pressure and blood fats, which only predicted nephropathy in the short term.

To measure insulin resistance, investigators used a novel calculation based on waist-to-hip ratio, hypertension status and long-term blood sugar levels.

"Although our measure of insulin resistance is an estimate based on easier-to-measure factors, it is strongly correlated with the gold standard – euglycemic clamp studies – and clearly stands out as the leading predictor of kidney disease in this study," said Dr. Orchard.

Other risk factors in those that developed nephropathy included elevated LDL ("bad") cholesterol, triglycerides, white blood cell count (a marker of inflammation) and blood pressure.

"The good news is that not all people with type 1 diabetes are insulin resistant, and for them the risk of kidney disease now appears to be low," Dr. Orchard said. "Even for someone with type 1 diabetes who is genetically predisposed to insulin resistance, the secret to avoiding nephropathy may well be to prevent insulin resistance through lifestyle changes such as proper diet, exercise, smoking cessation and perhaps medication.

"Another intriguing finding from this study is that since insulin resistance also predicts heart disease," Dr. Orchard continued, "it may explain the longstanding observation that in type 1 diabetes, kidney disease predicts heart disease. In other words, insulin resistance may be the ’common ground’ for both complications."

Investigators also examined genetic markers of risk and found that three markers linked to blood pressure and blood fats also predicted kidney disease.

Insulin resistance results when insulin fails to enable cells to admit glucose, necessary for cells’ energy production. Glucose then builds up in the blood, and additional insulin is required.

Up to 40 percent of people with type 1 diabetes develop kidney disease, in which the kidneys’ tiny blood vessels are damaged and unable to filter wastes and excess water from the blood. Untreated, nephropathy leads to end stage renal disease (ESRD), in which the kidneys’ entire filtration system closes down and the kidneys fail to function. A patient with ESRD requires dialysis or a kidney transplant to live.

Kathryn Duda | EurekAlert

More articles from Health and Medicine:

nachricht Study shows novel protein plays role in bacterial vaginosis
13.12.2019 | University of Arizona Health Sciences

nachricht Illinois team develops first of a kind in-vitro 3D neural tissue model
12.12.2019 | University of Illinois College of Engineering

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Virus multiplication in 3D

Vaccinia viruses serve as a vaccine against human smallpox and as the basis of new cancer therapies. Two studies now provide fascinating insights into their unusual propagation strategy at the atomic level.

For viruses to multiply, they usually need the support of the cells they infect. In many cases, only in their host’s nucleus can they find the machines,...

Im Focus: Cheers! Maxwell's electromagnetism extended to smaller scales

More than one hundred and fifty years have passed since the publication of James Clerk Maxwell's "A Dynamical Theory of the Electromagnetic Field" (1865). What would our lives be without this publication?

It is difficult to imagine, as this treatise revolutionized our fundamental understanding of electric fields, magnetic fields, and light. The twenty original...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Supporting structures of wind turbines contribute to wind farm blockage effect

13.12.2019 | Physics and Astronomy

Chinese team makes nanoscopy breakthrough

13.12.2019 | Physics and Astronomy

Tiny quantum sensors watch materials transform under pressure

13.12.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>