Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant compound kills brain tumor cells

30.08.2002


A chemical isolated from a weed that grows in mountain meadows in the western United States kills the cells of an aggressive brain cancer that affects some children. The compound, cyclopamine, blocks a signaling pathway that appears to be important for the survival of medulloblastoma, a form of cancer for which there is no effective treatment.

In an article published in the August 30, 2002, issue of the journal Science, a research team led by Howard Hughes Medical Institute investigator Philip A. Beachy reported that cyclopamine effectively killed cultured mouse medulloblastoma cells and tumors implanted in animals, as well as medulloblastoma cells extracted from human tumors.

“It will be difficult to obtain sufficient quantities of cyclopamine, since it must be extracted and purified from the plant source, Veratrum californicum, the corn lily,” said Beachy, who is at The Johns Hopkins University School of Medicine. “However, we believe that with this study, the evidence is in place to justify an effort to develop a supply so that it can be tested in humans.” Beachy and his colleagues at Johns Hopkins collaborated with researchers from the Fred Hutchinson Cancer Research Center and the University of Washington/Children’s Hospital in Seattle.



Beachy said there are some parallels between cyclopamine and taxol, a drug used to treat breast cancer drug that was initially in short supply because it had to be isolated from the bark of the Pacific yew tree. However, as taxol proved clinically effective, researchers developed an alternate method of partial synthesis of the compound from a more plentiful precursor in the needles that made the drug available in sufficient supply.

Beachy and his colleagues began to explore whether cyclopamine would be effective against medulloblastoma after studies by several groups, including HHMI investigator Matthew Scott and his colleagues at Stanford University, showed that both animals and humans developed tumors, including medulloblastomas, when the Hedgehog signaling pathway was activated. The pathway — named for its key regulatory protein Hedgehog — has long been known to be critical for the growth and differentiation of cells during embryonic development. Scott and his colleagues showed that the tumors they studied consisted of cells that had most likely reverted to a highly proliferative embryonic state, due to a mutation that enabled the activation of the Hedgehog pathway.

The earlier studies showed that the Hedgehog pathway was switched on when the function of one of the pathway’s key genes, called Patched, was lost because of mutation. The protein produced by Patched normally represses a downstream member of the Hedgehog pathway — a protein called Smoothened. Loss of Patched activates the Smoothened protein, turning on the Hedgehog pathway and leading to malignancy.

Beachy and his colleagues had shown previously that cyclopamine blocks the Hedgehog pathway in mouse embryos by inhibiting the activity of Smoothened. Reasoning that the drug might also prevent activation of the Hedgehog pathway in tumors, the scientists tested cyclopamine’s effects on a mouse model developed in Scott’s laboratory, in which one copy of the Patched gene had been disrupted. In these mice, Beachy and his colleagues also removed the gene for p53, a protein that normally triggers the death of cells with damaging mutations. The mice developed medulloblastomas at a young age when expression of the second normal Patched gene was inactivated.

The researchers cultured medulloblastoma cells from the mice and introduced those tumor cells into other mice that had compromised immune systems. “We showed that in these tumor cells we could readily suppress the Hedgehog pathway by treating the tumors with cyclopamine,” said Beachy. “We next decided to see whether the drug would affect tumors that had already been established in mice by injecting the tumor cells. We were pleased to see that cyclopamine could not only block the Hedgehog pathway, but could also stop the growth of these tumors and even cause them to regress,” he said.

The next logical step, said Beachy, was to determine whether cyclopamine was effective in human medulloblastomas. For these studies, co-author James Olson and colleagues at the Fred Hutchinson Cancer Research Center supplied medulloblastoma cells from patients who had undergone surgery to remove the tumors.

“When we treated dispersed cells from these tumors with cyclopamine, they died very quickly, and in fact, the drug appeared to be killing the cells faster than any drug Jim Olson and his colleagues had yet tested,” said Beachy. Also promising, said Beachy, was that in the animal studies, the drug produced no discernible side effects. “Of course, we can’t be sure that there are no side effects at this point, since we can’t ask a mouse how it’s feeling,” said Beachy. “But we saw no obvious adverse effects from the treatment.”

One promising result from the studies of human tumor cells, said Beachy, was that all seven of the human medulloblastomas the scientists tested responded dramatically to cyclopamine. “Genetic studies have shown that only perhaps twenty percent of such sporadic tumors can be assigned to mutations that specifically activate the Hedgehog pathway,” he said. “So, this finding suggests that perhaps activation of the Hedgehog pathway is essential to tumorigenesis, even when it is not specifically switched on by mutation.”

Although Beachy advocates immediate pre-clinical and clinical trials of cyclopamine for medulloblastoma, he cautioned that supply is a critical problem. “Right now, cyclopamine must be purified from the corn lily, and it is unclear how much could be harvested or cultivated,” said Beachy. “Synthesizing cyclopamine might be possible, but it would be very difficult.”

Jim Keeley | EurekAlert!

More articles from Health and Medicine:

nachricht Deep stimulation improves cognitive control by augmenting brain rhythms
04.04.2019 | Picower Institute at MIT

nachricht Black nanoparticles slow the growth of tumors
04.04.2019 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>