Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New drug that enhances glutamate transmission in brain being evaluated for fragile X

28.08.2002


Rush is one of only two sites in nation testing the drug that may provide new treatment option

Physicians at Rush-Presbyterian St. Luke’s Medical Center have begun to recruit patients as part of a clinical research study that will evaluate the effectiveness of a new drug as a potential treatment for fragile X syndrome and autism.

The trials are taking place at Rush and the University of California, Davis. The principal investigators in the study are Dr. Elizabeth Berry-Kravis, a pediatric neurologist at Rush-Presbyterian St. Luke’s Medical Center; and Dr. Randi J. Hagerman, medical director, M.I.N.D. Institute, School of Medicine, University of California, Davis. Dr. Edwin Cook an expert in autism at the University of Chicago contributed to the development of the clinical protocol.



"Currently there are no therapies on the market to treat cognitive deficits associated with fragile X syndrome or autism," said Berry-Kravis. "However, in the past five years, basic research has led to an improved understanding of these diseases and a number of scientists have suggested that the use of a drug to enhance glutamate transmission could be beneficial." The study will evaluate CX516 (Ampalex®), an Ampakine® compound, which has been proven to enhance glutamate transmission in the brain through activation of AMPA receptors. Ampalex® is made by Cortex Pharmaceuticals which will provide the study medication. The research is funded by the FRAXA Research Foundation.

Fragile X is an inherited disorder and is the most common cause of inherited mental retardation, affecting 1 in 2,000 males and 1 and 4,000 females. Symptoms of fragile X syndrome include mental impairment ranging from learning disabilities to mental retardation, attention deficit and hyperactivity, anxiety and unstable mood, autistic-like behaviors, long face, large ears, flat feet, and hyperextensible joints, especially fingers. "Once you have a patient with fragile X syndrome, that’s a big red flag because that means the mutation has been in the family in a silent form for years," says Berry-Kravis.

Males are typically more severely affected than females. Although most males have mental retardation, only one-half of females have intellectual impairment (which tends to be milder in females); the rest have either normal IQ or learning disabilities. Emotional and behavioral problems are common in both sexes. Currently there are no therapeutic treatments for the learning problems associated with the disease, although medications for anxiety and ADHD are used to treat behavioral symptoms. Rush-Presbyterian-St. Luke’s Medical Center is the only clinical site for care of fragile X patients in the Chicago area.

Autism is a complex developmental disability that typically appears during the first three years of life. The result of a neurological disorder that affects the functioning of the brain, autism and its associated behaviors have been estimated to occur in as many as 2 to 6 in 1,000 individuals. Autism is four times more prevalent in males than in females.

A variety of scientific evidence suggests that increasing glutamate neuronal transmission may be beneficial in autism and in fragile X syndrome. Imaging studies demonstrate that areas of the brain that are extremely rich in glutamate transmission are less active in autistic patients. Molecular studies suggest that although genes involved in the AMPA-type glutamate receptor are more active in autistic patients, the density of AMPA-type glutamate receptors is decreased. Drugs that reduce glutamatergic transmission induce symptoms similar to those seen in autistic patients. Taken together, these facts suggest that enhancing AMPA receptor activity may be beneficial in autistic patients.

The scientific logic for using an AMPA receptor activator in fragile X syndrome is even more compelling because of recent findings regarding the direct impact of the genetic defect in fragile X on neural cell activity. The genetic defect results in the reduction or absence of an important protein, FMRP. FMRP is believed to play an important role in allowing normal levels of AMPA receptor proteins to be made - in the absence of FMRP, AMPA receptors are decreased and show lower activity levels. The abnormal AMPA receptor activity is likely related to the abnormal connections seen between neurons in the brains of those with fragile X syndrome. Increasing the activity of AMPA receptors with an Ampakine® may to some degree overcome the reduced number of AMPA receptors, with resulting improvements in brain connections in individuals with fragile X syndrome.

The design of the Phase II clinical study is a randomized double-blind placebo controlled trial lasting four weeks. Fifty patients from the Chicago area will be recruited for the study. It is anticipated that enrollment will occur over a two-year period. Outcome measures will include testing in four domains of attention and executive function; spatial and verbal/auditory memory; language; and behavior.

John Pontarelli | EurekAlert!

More articles from Health and Medicine:

nachricht Deep stimulation improves cognitive control by augmenting brain rhythms
04.04.2019 | Picower Institute at MIT

nachricht Black nanoparticles slow the growth of tumors
04.04.2019 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>