Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate and cholera: an increasingly important link

28.08.2002


The link between climate and cholera, a serious health problem in many parts of the world, has become stronger in recent decades, say researchers from the University of Michigan, the University of Barcelona and the International Center for Diarrhoeal Disease Research in Bangladesh.



Their research will be published in the online version of the Proceedings of the National Academy of Sciences this week.

In a previous study published in the journal Science, the researchers found evidence that El Nino-Southern Oscillation (ENSO), a major source of climate variability from year to year, influences cycles of cholera. In that work, they looked only at climate and disease data from Bangladesh for the past two decades. In the new research, they compared those results with data from Bangladesh for the periods 1893-1920 and 1920-1940 to see whether the coupling between climate variability and cholera cycles has become stronger in recent decades. Their examination of the data, which relied on a suite of techniques called time series analysis, suggests that it has.


“What is new in this work is not showing that ENSO plays a role in the variability of cholera, but that the role of ENSO has intensified,” says Mercedes Pascual, an assistant professor in the department of Ecology and Evolutionary Biology at the University of Michigan. In addition, the link is strongest following ENSO events, with cholera increasing after warm events and decreasing after cold events. In the years between events, the climate-cholera connection breaks down.

Scientists who study climate change predict that ENSO will become stronger and more variable in coming years under a global warming scenario, so understanding how its connection to human disease changes will be increasingly important, says Pascual.

Cholera, an intestinal infection with symptoms that may include diarrhea, vomiting and leg cramps, is caused by the bacterium Vibrio cholerae. People usually get the disease by eating or drinking contaminated food or water.

The greater role of ENSO in cholera dynamics probably reflects known changes in ENSO itself, the researchers believe. Since the late 1970s, there has been a tendency toward warmer ENSO events, in conjunction with global warming. Because the disease-causing bacterium lives in brackish water and thrives in warm temperatures, it may be particularly sensitive to climate patterns. People also may be more likely to come in contact with contaminated water in warmer weather.

Other diseases, such as malaria and dengue, may be similarly affected by climate variability, says Pascual. But because other factors, such as patterns of immunity, also lead to cycles in disease dynamics, Pascual and her colleagues are working on methods to sort out the relative roles of climate and intrinsic factors such as temporary immunity.


Contact: Nancy Ross-Flanigan
Phone: (734) 647-1853
E-mail: rossflan@umich.edu

Nancy Ross-Flanigan | EurekAlert!
Further information:
http://www.umich.edu/~newsinfo

More articles from Health and Medicine:

nachricht Why might reading make myopic?
18.07.2018 | Universitätsklinikum Tübingen

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Scientists uncover the role of a protein in production & survival of myelin-forming cells

19.07.2018 | Life Sciences

In the ocean's twilight zone, tiny organisms may have giant effect on Earth's carbon cycle

19.07.2018 | Earth Sciences

Lying in a foreign language is easier

19.07.2018 | Social Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>