Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sleep and sedation controlled in same brain centre, say scientists

26.08.2002


Undergoing anaesthesia may be more like falling asleep than we once thought, according to new research from Imperial College London and Harvard Medical School, USA.



Researchers report today in the journal Nature Neuroscience how two of the most widely used anaesthetics, pentobarbital and propofol induce sleep by mimicking the natural process of falling into a deep sleep.

Using behavioural studies and molecular imaging techniques in rats, the team of basic scientists and clinicians found that the sleep-inducing action of anaesthetics is localised to a small area of the brain, the tuberomammillary nucleus (TMN), part of the hypothalamic region that controls other fundamental processes such as breathing and temperature regulation.


The team showed that the anaesthetics produce their sedative effect by locking on to a specific type of neurotransmitter receptor in the TMN called GABA-A.

GABA-A receptors have an inhibitory action, hence when anaesthetic molecules bind to them they stop the nerve cells from sending electrical signals to other neurons.

"The sleep-inducing action of general anaesthetics occurs by hijacking one pathway in the brain responsible for promoting deep sleep," said Professor Nick Franks of Imperial College London.

"The TMN region of the brain is part of a key switching mechanism in the sleep/wake cycle. When stimulated, it sends excitatory signals to other parts of the brain telling the body to be awake. TMN neurons are pharmacologically inhibited by the negative action of the anaesthetics binding to the GABA-A receptor - leading to a sleep induced state," said Professor Franks.

"Although not all anaesthetics exert their sedative effect using GABA-A receptors, the research is significant because it indicates that the sleep-inducing effect of anaesthetics acts on specific areas of the brain," he added.

Professor Mervyn Maze, Head of the Department of Anaesthetics and Intensive Care at Imperial College London and senior author of the study said that their new understanding of how anaesthetics induce sleep could lead to new anaesthetics providing a better recovery for patients.

"Individuals need a prolonged period of deep sleep to gain its restorative benefits. Patients recovering from surgery and those in intensive care often suffer from sleep-deprivation. Our research might lead to the design of anaesthetics that mimic non-REM sleep more accurately, reducing post-operative fatigue," said Professor Maze.

The research was supported by the Medical Research Council (UK), the Westminster Medical Trust (UK) and the National Institutes of Health (USA).

Judith Moore | alfa
Further information:
http://www.ic.ac.uk

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

X-ray scattering shines light on protein folding

10.07.2020 | Life Sciences

Looking at linkers helps to join the dots

10.07.2020 | Materials Sciences

Surprisingly many peculiar long introns found in brain genes

10.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>