Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making cancer cells susceptible to therapeutic attack

23.08.2002


A researcher at the University of Illinois at Chicago College of Medicine is discovering how a gene known as E1A, found in a virus responsible for the common cold, renders tumor cells vulnerable to destruction.



"By explaining how E1A works, we hope to develop novel strategies to make human immunological defenses against tumors, as well as chemotherapy and radiation therapy, more effective in combating cancer," said Dr. James Cook, chief of infectious diseases and a member of the UIC Cancer Center.

The latest study is published in the July 23 issue of the Proceedings of the National Academy of Sciences.


To date, Cook and his colleagues have tested the E1A gene in cancer cells from four species: hamsters, mice, rats and humans. In all four cases, E1A renders the malignancies susceptible to defender cells of the immune system.

"We believe that these observations may reveal a common Achilles heel of many types of cancer cells," Cook said.

According to Cook, the goal is to find ways to make standard treatments for cancer more effective. Although the disease may respond to the first course of chemotherapy or radiation, typically tumor cells become more resistant later on, when the cancer recurs or metastasizes. The reasons are not clear.

Possibly, series of mutations are acquired as the tumor grows, yielding a naturally selected population of cells capable of thwarting killing agents. The standard clinical course is to change the drug or radiation strategy, but that may not be feasible or useful.

As an alternative, based on the studies Cook is undertaking, physicians may one day be able to alter the resistant malignant tissue itself, making it vulnerable to therapy.

"E1A is helping us identify the set of cellular switches that need to be turned on or off to render cancer cells more sensitive to therapeutic injury," Cook said.

In the present study, Cook and his colleagues examined a chain of molecular events that occur when cancer cells are confronted with one of the battery of chemicals produced by the immune system. The laboratory experiment mimicked what happens when a tumor begins to grow and the immune system tries to destroy the malignancy.

The chemical used in the study, called tumor necrosis factor, is manufactured primarily by macrophages, which are among the first cells on the scene in an immune response to tumors. When tumor necrosis factor attaches to receptors on the surface of a malignant cell, preparing the way for a full-scale attack, the cancer cell typically blocks the assault.

But when the E1A gene is inserted in the malignant cells, it shuts down the tumor’s defense mechanism. Cook showed that one key step in foiling the defense occurs when E1A gene products bind to cellular retinoblastoma proteins -- proteins that normally regulate a cell’s life cycle.

The finding suggests that the E1A gene renders malignant cells susceptible to attack not by interfering with their physiological functioning, but by preventing their use of normal cellular machinery to avoid destruction by the body’s immune defenses.

"Multiple molecular mechanisms triggered by E1A prevent tumor cells from thwarting an immunological attack," Cook said. "Further definition of these mechanisms will help us develop new concepts that may be useful for treating cancer, in part by enlisting the body to become a more active partner in fighting the disease."

Sharon Butler | EurekAlert!
Further information:
http://www.uic.edu/
http://www.uic.edu/com/cancer

More articles from Health and Medicine:

nachricht Why might reading make myopic?
18.07.2018 | Universitätsklinikum Tübingen

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>