Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds link between common neurological disorder and Alzheimer’s disease

22.08.2002


A new study by scientists at The Wistar Institute links the genes responsible for neurofibromatosis, a common neurological disorder, to a protein thought to play a role in Alzheimer’s disease.



In establishing a connection between the two diseases, the research opens new lines of thinking for investigators studying both diseases, while also providing basic biological insights into vital cellular processes. A report on the study was published electronically on August 20 in the Journal of Biological Chemistry.

The protein shared by neurofibromatosis and Alzheimer’s disease is kinesin-1, known to be pivotal to protein trafficking, which is the movement of various needed proteins from one part of a cell to another. Neurons are characterized by long arms called processes that extend away from the cell body, and under normal circumstances proteins move along a system of microtubules to reach all parts of the neuron. Problems with the internal transport of proteins can lead to neuronal malfunction and death.


"This protein, kinesin-1, is like a locomotive that pulls cargo throughout the cell," says Ramin Shiekhattar, Ph.D., an associate professor at The Wistar Institute and senior author on the study. "In neurons, it pulls its cargo down microtubules, which can be thought of like the rails for the locomotive. Kinesin-1 is vital for efficient protein trafficking within neurons and other cells, and it’s of great interest to us to find it linked to the genes that cause neurofibromatosis."

The two genes linked to the disease are among the most commonly mutated genes in the entire human genome. The primary neurofibromatosis-related gene, called NF1, or neurofibromin, was identified in the early 1990s by Francis S. Collins, M.D., Ph.D., now director of the National Human Genome Research Institute. Another less common gene linked to the same disorder is called NF2, or merlin. Since the discovery of these genes, however, most aspects of their activity in the body and in neurofibromatosis have remained a mystery.

Neurofibromatosis is a common disorder, more prevalent than cystic fibrosis, muscular dystrophy, Huntington’s disease, and Tay-Sachs disease combined. It can cause tumors along nerves throughout the body and can affect the development of non-nervous tissues such as bones and skin. The disease can also cause learning disabilities of differing severity. While most cases of neurofibromatosis are mild to moderate, it can lead to disfigurement, blindness, deafness, skeletal abnormalities, retardation, and tumors of the skin, spine, and brain.

In the current study, the Wistar researchers used the tools of biochemistry to identify distinct NF1- and NF2-containing protein complexes in the nucleus and the cytoplasm of cells. An analysis by mass spectrometry of the nuclear complex revealed four subunits, one of which was kinesin-1.

"Kinesin-1 is the real engine of this protein complex," Shiekhattar says.

Unrelated recent studies have also shown that kinesin-1 interacts with a protein called amyloid precursor protein, of APP, which has been implicated in Alzheimer’s disease, a major cause of dementia in older people.

"If kinesin-1 is the locomotive, then APP’s role appears to be to hook the cargo to the locomotive," Shiekhattar explains. "Finding kinesin-1 in protein complexes that also contain NF1 and NF2 clearly ties neurofibromatosis and Alzheimer’s disease to a common cellular pathway."


The lead author on the Journal of Biological Chemistry study is Mohamed-Ali Hakimi, Ph.D., at The Wistar Institute. Wistar professor David W. Speicher, Ph.D., collaborated on the study. This research was supported by grants from National Institutes of Health.

The Wistar Institute is an independent nonprofit biomedical research institution dedicated to discovering the causes and cures for major diseases, including cancer, cardiovascular disease, autoimmune disorders, and infectious diseases. Founded in 1892 as the first institution of its kind in the nation, The Wistar Institute today is a National Cancer Institute-designated Cancer Center - one of only eight focused on basic research. Discoveries at Wistar have led to the development of vaccines for such diseases as rabies and rubella, the identification of genes associated with breast, lung, and prostate cancer, and the development of monoclonal antibodies and other significant research technologies and tools.

Franklin Hoke | EurekAlert!
Further information:
http://www.wistar.upenn.edu

More articles from Health and Medicine:

nachricht New antibody analysis accelerates rational vaccine design
09.08.2018 | Scripps Research Institute

nachricht Distrust of power influences choice of medical procedures
01.08.2018 | Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>