Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Promising multi-strain HIV vaccine candidate emerges

20.08.2002


AIDS researchers have developed a candidate vaccine strategy that, for the first time, demonstrates an ability to elicit antibodies that block the infection of multiple HIV virus strains -- an elusive scientific goal that has been pursued for a decade.



The candidate vaccine - still early in developmental stages at the Institute of Human Virology (IHV) -- is described in a report to appear during the week of Aug. 19-23 in the U.S. Proceedings in the National Academy of Sciences (PNAS). It is authored by Drs. Timothy Fouts, Anthony Devico, and colleagues at the IHV, a center of the University of Maryland Biotechnology Institute and affiliated with the University of Maryland Medical Center, and Dr. Ranajit Pal and colleagues at Advanced BioScience Laboratories, Inc. (ABL) in Kensington, Md.

One of the major challenges in developing an effective AIDS vaccine has long been the fact that the virus that causes AIDS, much like the influenza virus, exists as multiple strains that present many different faces to the immune system, say the authors. The surface of the AIDS virus, HIV, is coated with a protein called gp120 that has chemical features that vary from strain to strain. It has been difficult for researchers to find a single vaccine component that is able to generate antibodies that recognize the many forms of gp120 that exist in nature.


The IHV/ABL research team approached the problem by recognizing that all gp120 molecules have a shared characteristic that allows all HIV strains to bind a molecule on human target cells called CD4. Importantly, once gp120 forms a complex with CD4, it undergoes structural and chemical changes that reveal features shared by all HIV strains.

Taking advantage of this knowledge, the team produced artificial gp120-CD4 complexes that were chemically treated in order to glue or "crosslink" them together. The complexes were then used to generate antibodies in small animals and monkeys.

"The gp120-CD4 complex has shown a consistent ability to generate antibodies that neutralize a wide range of HIV-1 isolates," says Dr. Devico, assistant professor, IHV. "The preliminary findings indicate the gp120-CD4 complex might serve as a useful model for HIV vaccine development," he adds.

Long the hope of AIDS researchers, it now appears that developing a single HIV vaccine for multiple viruses is indeed an increasingly realistic endeavor, according to IHV Director Dr. Robert C. Gallo.

"This is one of the more exciting findings that I have witnessed in HIV/AIDS research since the early days when it seemed scientific advances were announced regularly," says Dr. Gallo, who is also co-discover of the AIDS virus.

"From the beginning of the field of HIV/AIDS research, the most important goal was to develop a vaccine that prevents virus infection," says Dr. Gallo. "The difficulties have been many, spanning close to two decades. But this has the potential to bring us a major step forward in that ultimate quest. At the Institute of Human Virology, we will make this our prime effort."

The timing couldn’t be more critical, he says.

"HIV/AIDS has overcome the 1918 influenza pandemic and bubonic plague of the 14th century to become the worst epidemic and deadliest disease in medical history," comments Dr. George Lewis, director of the IHV’s Division of Vaccine Development. "Twenty-five million persons have died worldwide, another 40 million are infected and the numbers are rapidly escalating second to second, he explains.

"While advances in therapeutics are helping many with the disease live longer and healthier lives," Lewis adds, "most of the world lacks theses resources and our best bet to stop the AIDS epidemic is a vaccine. We hope this will become an effective tool toward that global goal."

Though designed as a preventative vaccine, the complex might also be useful as a therapeutic vaccine, say the authors. The gp120-CD4 complex will continue to be evaluated with regard to safety and immunogenicity within the next two years should precede into Phase I clinical trials, according to Dr. Gallo.

Gwen Fariss Newman | EurekAlert!
Further information:
http://www.umbi.umd.edu/

More articles from Health and Medicine:

nachricht New flexible, transparent, wearable biopatch, improves cellular observation, drug delivery
12.11.2018 | Purdue University

nachricht Exosomes 'swarm' to protect against bacteria inhaled through the nose
12.11.2018 | Massachusetts Eye and Ear Infirmary

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

Im Focus: Nanorobots propel through the eye

Scientists developed specially coated nanometer-sized vehicles that can be actively moved through dense tissue like the vitreous of the eye. So far, the transport of nano-vehicles has only been demonstrated in model systems or biological fluids, but not in real tissue. The work was published in the journal Science Advances and constitutes one step further towards nanorobots becoming minimally-invasive tools for precisely delivering medicine to where it is needed.

Researchers of the “Micro, Nano and Molecular Systems” Lab at the Max Planck Institute for Intelligent Systems in Stuttgart, together with an international...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

In focus: Peptides, the “little brothers and sisters” of proteins

12.11.2018 | Life Sciences

Materials scientist creates fabric alternative to batteries for wearable devices

12.11.2018 | Materials Sciences

A two-atom quantum duet

12.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>