Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New broccoli compound appears promising against breast cancer

19.08.2002


In the future, a "broccoli-pill" a day may help keep breast cancer at bay. Researchers have developed a new compound, designed from a known anticancer agent found in broccoli, that shows promise as a breast cancer preventive.



Apparently less toxic than its natural counterpart, the compound could be marketed for cancer prevention, the researchers say. Their findings were described at the 224th national meeting of the American Chemical Society, the world’s largest scientific society.

Tests in animals have shown encouraging results, but no human studies have been done. If tests confirm the findings, the compound could be developed into a once-a-day pill or vitamin component for cancer prevention and perhaps be on the market in seven to ten years, the researchers say.


"It may be easier to take a cancer-prevention pill once a day rather than rely on massive quantities of fruits and vegetables," says Jerry Kosmeder, Ph.D., research assistant professor at the University of Illinois at Chicago and an investigator in the study.

Called oxomate, the synthetic compound works like its natural counterpart, sulforaphane, which was recently identified as a cancer-preventive agent in broccoli and other cruciferous vegetables (such as cabbage and Brussels sprouts). Both compounds boost the body’s production of phase II enzymes, which can detoxify cancer-causing chemicals and reduce cancer risk.

But the natural broccoli compound, sulforaphane, can be toxic in high doses, warns Kosmeder. He cites laboratory studies in which the compound, above certain levels, killed cultured animal cells. It is also difficult and expensive to synthesize. These factors make sulforaphane a poor candidate for drug development, he said.

Kosmeder designed oxomate to be less toxic than its parent compound by removing the chemical components that appear to be responsible for this toxicity. In tests on cultured liver cells, oxomate was seven times less toxic than sulforaphane, the researcher said. The synthetic compound is also cheaper and easier to produce, he added.

In tests on female rats, those that were fed oxomate after exposure to cancer-inducing chemicals had up to a 50 percent reduction in the number of breast tumors compared to rats that did not receive the compound, said Kosmeder.

After the initial discovery of sulforaphane as a broccoli component (by researchers at Johns Hopkins University in Baltimore), consumers have been urged to eat more of the vegetable and its close relatives to obtain its cancer-fighting benefit. For those who don’t like to eat the familiar green stalks and their bushy flowerets, consumers have a growing number of dietary options, including sprouts, teas and tablets made from natural concentrates.

Kosmeder believes that these variations present a dosing challenge, as not all broccoli-derived products contain the same amount of sulforaphane. This is due to variations in the vegetable’s processing, growing conditions and strain, he said.

"Oxomate would give you a definitive benefit; you’d know exactly how much you’re getting everyday, its exact benefit and risk," the researcher says.

Oxomate could be taken along with other cancer preventive agents, including nutrients and drugs, in an effort to maximize protection, he said.

Tamoxifen is currently the only FDA approved drug for breast cancer prevention in high-risk women. It works by a different mechanism from oxomate’s. Tamoxifen helps a woman who has estrogen-dependent tumors, but may not help those with non-estrogen-dependent tumors, says Kosmeder. A drug based on oxomate would help prevent cancer formation regardless of whether the tumor is estrogen-dependent or non-estrogen-dependent, he says.

If subsequent tests for preventing other types of cancer prove effective, then oxomate might be useful for anyone who is at increased risk of cancer due to exposure to cancer-causing agents, according to Kosmeder. The drug would be particularly beneficial for those at highest risk, such as smokers, he says.

Consumers are still urged to continue eating healthful amounts of fruits and vegetables and to reduce their exposure to cancer risk factors, such as smoking, the researcher says.

Kosmeder conducted his oxomate studies as part of a research team headed by John M. Pezzuto, Ph.D., head of the department of medicinal chemistry and pharmacognosy at the university and deputy director of its Cancer Center.


The National Cancer Institute provided funding for this study.
The poster on this research, MEDI 98, will be presented at 8:00 p.m., Sunday, Aug. 18, at the Hynes Convention Center, Hall B, during a general poster session, and at 8:00 p.m., Monday, Aug. 19, at the Hynes Convention Center, Hall B, during Sci-Mix).

Jerry Kosmeder, Ph.D., is a research assistant professor in department of medicinal chemistry and pharmacognosy at the University of Illinois at Chicago.

John M. Pezzuto, Ph.D., is head of the department of medicinal chemistry and pharmacognosy at the University of Illinois at Chicago. He is also deputy director of the university’s Cancer Center.

Charmayne Marsh | EurekAlert!

More articles from Health and Medicine:

nachricht Deep stimulation improves cognitive control by augmenting brain rhythms
04.04.2019 | Picower Institute at MIT

nachricht Black nanoparticles slow the growth of tumors
04.04.2019 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>