Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laser procedure effective in correcting nasal blockages associated with deviated septum

15.08.2002


A new laser procedure that requires only local anesthetic is effective in treating nasal passageway obstructions associated with a deviated nasal septum, according to an article in the July-September issue of The Archives of Facial Plastic Surgery, one of the JAMA/Archives journals. The procedure uses heat generated by a laser to soften cartilage abnormalities so that they can be flattened or shaped to clear the nasal passages.



The septum is the cartilage wall that divides and separates the nostrils. People who have a deviated septum may have a hole in the septum, or other malformations that can block the nasal passageways and can cause varying degrees of difficulty with breathing. Traditional surgery to solve these problems uses a scalpel to cut away flaps inside the nose and reshape the cartilage manually. Stitches are needed to close the surgical wounds. The procedure is costly and the patient may need time off from work to recover. The new procedure uses a laser to heat the malformations until they are soft enough to be pressed or formed so that they aren’t blocking the nasal passageways.

Yuri Ovchinnikov, M.D., of Moscow State University, Russia, and colleagues used the laser procedure on 110 patients between 11 years old and 66 years old. Patients were followed up for an average of 18 months.


The laser outpatient procedure lasted 6 to 8 minutes. The researchers found that 84 (76 percent) patients had an improvement in their airways, and with symptoms associated with nasal blockages. The authors write, "After 7 to 10 days, the septal cartilage in all patients tended to recover some of the initial deformity (shape-memory effect). Two to 3 weeks later, the cartilage started to restraighten. The septum reached a stable shape after 3 to 4 weeks. This shape change remained stable throughout the observation period (2 to 3 years)."

In 27 (24 percent) of the patients, abnormalities treated with the laser procedure resumed their original shapes. The authors found that these patients had spurs or other abnormalities, didn’t receive uniform heating of the cartilage and had other disorders, like rhinitis, a chronic allergic condition causing breathing problems, nasal irritation and runny nose.

The researchers conclude "Our results in 110 patients using this new laser-based procedure to reshape the nasal septum may provide an alternative to classic operations for reducing morbidity, operating room times, and the economic impact of time lost from work."


(Arch Facial Plast Surg. 2002;4:180-185. Available post embargo at archfacial.com)

Editor’s Note: This study was supported by a grant from the U.S. Civilian Research & Development Foundation (Arlington, Va) and by grants from the Russian Foundation for Basic Research (Moscow).


Emil Sobol | EurekAlert!
Further information:
http://www.ama-assn.org/

More articles from Health and Medicine:

nachricht Inselspital: Fewer CT scans needed after cerebral bleeding
20.03.2019 | Universitätsspital Bern

nachricht Building blocks for new medications: the University of Graz is seeking a technology partner
19.03.2019 | Karl-Franzens-Universität Graz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>