Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laser procedure effective in correcting nasal blockages associated with deviated septum

15.08.2002


A new laser procedure that requires only local anesthetic is effective in treating nasal passageway obstructions associated with a deviated nasal septum, according to an article in the July-September issue of The Archives of Facial Plastic Surgery, one of the JAMA/Archives journals. The procedure uses heat generated by a laser to soften cartilage abnormalities so that they can be flattened or shaped to clear the nasal passages.



The septum is the cartilage wall that divides and separates the nostrils. People who have a deviated septum may have a hole in the septum, or other malformations that can block the nasal passageways and can cause varying degrees of difficulty with breathing. Traditional surgery to solve these problems uses a scalpel to cut away flaps inside the nose and reshape the cartilage manually. Stitches are needed to close the surgical wounds. The procedure is costly and the patient may need time off from work to recover. The new procedure uses a laser to heat the malformations until they are soft enough to be pressed or formed so that they aren’t blocking the nasal passageways.

Yuri Ovchinnikov, M.D., of Moscow State University, Russia, and colleagues used the laser procedure on 110 patients between 11 years old and 66 years old. Patients were followed up for an average of 18 months.


The laser outpatient procedure lasted 6 to 8 minutes. The researchers found that 84 (76 percent) patients had an improvement in their airways, and with symptoms associated with nasal blockages. The authors write, "After 7 to 10 days, the septal cartilage in all patients tended to recover some of the initial deformity (shape-memory effect). Two to 3 weeks later, the cartilage started to restraighten. The septum reached a stable shape after 3 to 4 weeks. This shape change remained stable throughout the observation period (2 to 3 years)."

In 27 (24 percent) of the patients, abnormalities treated with the laser procedure resumed their original shapes. The authors found that these patients had spurs or other abnormalities, didn’t receive uniform heating of the cartilage and had other disorders, like rhinitis, a chronic allergic condition causing breathing problems, nasal irritation and runny nose.

The researchers conclude "Our results in 110 patients using this new laser-based procedure to reshape the nasal septum may provide an alternative to classic operations for reducing morbidity, operating room times, and the economic impact of time lost from work."


(Arch Facial Plast Surg. 2002;4:180-185. Available post embargo at archfacial.com)

Editor’s Note: This study was supported by a grant from the U.S. Civilian Research & Development Foundation (Arlington, Va) and by grants from the Russian Foundation for Basic Research (Moscow).


Emil Sobol | EurekAlert!
Further information:
http://www.ama-assn.org/

More articles from Health and Medicine:

nachricht Diabetes mellitus: A risk factor for early colorectal cancer
27.05.2020 | Nationales Centrum für Tumorerkrankungen (NCT) Heidelberg

nachricht Ultra-thin fibres designed to protect nerves after brain surgery
27.05.2020 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Black nitrogen: Bayreuth researchers discover new high-pressure material and solve a puzzle of the periodic table

29.05.2020 | Materials Sciences

Argonne researchers create active material out of microscopic spinning particles

29.05.2020 | Materials Sciences

Smart windows that self-illuminate on rainy days

29.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>