Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ras Gene Causes Cancer Via Different Pathways in Humans vs. Mice

15.08.2002


Finding May Present a New Target for Anti-Cancer Drugs



Researchers at the Duke Comprehensive Cancer Center have found that a known cancer-causing gene, Ras, may exert its influence through very different pathways in humans than in mice, a finding that could offer tantalizing new targets for anti-cancer therapy.

While studying the Ras, gene, Duke researchers unexpectedly found that it activates an obscure group of proteins in humans, but not in mice, in order to turn normal cells malignant. Yet many cancer treatments are based on data scientists derive from mouse models.


“Our study highlights a little-known pathway that appears to play a critical role in the ability of Ras, to transform human cells, but not mouse cells, to become tumorigenic,” said Christopher Counter, Ph.D., a cancer biologist at the Duke Comprehensive Cancer Center. “This pathway could present a new protein target for anti-cancer drugs in humans, and it reinforces the inherent differences between human and mouse cancers in terms of how they evolve.”

Results of the Duke study are being published in the Aug. 15, 2002, issue of Genes and Development.

The Duke researchers decided to study oncogenic Ras, one of the first genes found to be involved in human cancers, because it is associated with very different malignancies in humans than in mice. Ras is activated in one-third of all human cancers, and as high as 90 percent in specific cancers, like pancreatic. In mice, Ras is associated with breast, skin and lung cancers.

Despite these differences, it was assumed that Ras signals the same set of proteins in mice as it does in humans for cells to become cancerous. The Duke scientists challenged this assumption and studied, for the first time, how Ras transforms human cells.

Team members Nesrin Hamad, Ph.D., and Joel Elconin, M.D., set out to map how Ras communicates with various signaling pathways that, when over-activated, ultimately command cells to proliferate uncontrollably. The scientists placed human and mouse cells in laboratory dishes, genetically modified the cells to express mutated forms of Ras, then traced how the protein produced by the Ras gene promoted cells to transform.

As expected, Ras exerted its malignant effects in mice cells primarily through a protein called Raf, whose specific job is to modify a chain of additional proteins that direct the cell’s behavior to proliferate. Unexpectedly, Raf was not sufficient to turn normal human cells cancerous, the study found. Instead, in human cells the Ras gene appeared to activate a different protein pathway, called RalGEFs, to transform normal cells into cancer.

Little is known about RalGEFs, possibly because they have never been considered critical to human cancers, but researchers suspect that they may assist cells in ferrying molecules within and outside of cells -- a process called vesicle transport. How these functions relate to Ras’ ability to transform normal cells into cancers remains unknown, said Counter. Nevertheless, the Duke study clearly showed that RalGEFs were necessary for the ability of Ras to transform normal human cells, he added.

“We propose that there are multiple proteins that Ras signals through in order to transform human cells, but there are significant differences in the relative potency of each pathway between humans and mice” Counter said. “The Ras oncogene appears to exert its function in humans through a pathway that was largely ignored.”

Rebecca Levine | EurekAlert!
Further information:
http://cancer.duke.edu/
http://www.genesdev.org/

More articles from Health and Medicine:

nachricht Diabetes mellitus: A risk factor for early colorectal cancer
27.05.2020 | Nationales Centrum für Tumorerkrankungen (NCT) Heidelberg

nachricht Ultra-thin fibres designed to protect nerves after brain surgery
27.05.2020 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Black nitrogen: Bayreuth researchers discover new high-pressure material and solve a puzzle of the periodic table

29.05.2020 | Materials Sciences

Argonne researchers create active material out of microscopic spinning particles

29.05.2020 | Materials Sciences

Smart windows that self-illuminate on rainy days

29.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>