Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New test piloted for childhood leukaemia

05.08.2002


A new screening test to be piloted in Bristol could help to revolutionise the way children with leukaemia are treated by enabling doctors to fine tune treatment to the needs of each individual patient.



Experts from five centres - Bristol, Glasgow, Leeds, London and Sheffield - will pilot the test for the most common form of the childhood leukaemia - acute lymphoblastic leukaemia (ALL). The team at the University of Bristol and Bristol Royal Hospital for Children is using special technology called RQ- PCR (real time quantitative polymerase chain reaction) to measure the residual cancer cells - known as minimum residual disease - that remain after a child`s treatment.

All children treated for this cancer will have some residual leukaemia cells in their bone marrow that remain after the first month of chemotherapy. The level may fluctuate between 1/20 cells and 1/ 10,000 cells. Research in the UK and Europe has shown that the higher the level of residual disease the more likely a child is to relapse. Until now, the problem has been that conventional techniques are not sensitive enough to accurately measure the levels of residual leukaemia cells.


Dr Nick Goulden from the Bristol Royal Hospital for Children, says: "Preliminary studies have demonstrated that measuring residual disease enables us to predict whether a child will relapse. We hope that once this test is established in the UK doctors will be able to intervene at an earlier stage with more or less aggressive therapy based on the level of residual disease present in the blood and bone marrow."

In total the five research teams have been awarded £500,000 from the Leukaemia Research Fund to carry out a feasibility study before the test can become a central component of the next national trial (see notes for editors).

Once the genetic fingerprint of a leukaemia cell has been identified, the residual cells can be quickly and accurately tested using the new RQ-PCR technology. This is a relatively new technique which allows scientists to amplify a given sequence of DNA millions of times within the space of a few hours.

One family who understands the importance of this research is the Baggley family from Taunton, whose daughter Olivia was diagnosed with acute lymphoblastic leukaemia in 1997 when she was five years old.

"It is only when you are faced with this disease that you realise how important research is to improving treatment," says Olivia`s mother Deborah. "I hope this research will make treatment simpler and even help to save the lives of children who may otherwise have relapsed and died."

Olivia - who is now 10 years - was treated with intensive chemotherapy at Bristol Royal Hospital for Children. When the disease returned early in January 2000 the doctors decided the best option was a stem cell transplant. She has now been in remission for two years.

Dr David Grant, Scientific Director of the Leukaemia Research Fund, said: "This is a key step forward which should lead to better treatment for every single child who is diagnosed with this terrible disease."

"It should enable doctors to give more immediate and more appropriate treatment for children with a high risk disease. Equally, it would also allow doctors to identify children who could be cured with less intensive treatment, thereby reducing the gruelling side-effects of aggressive treatment," he added.

Around 21,500 people are diagnosed with leukaemia or one of the related blood disorders in the UK every year.

Leukaemia Research Fund is the only national charity devoted exclusively to improving treatments, finding cures and learning how to prevent leukaemia, Hodgkin`s disease and other lymphomas, myeloma and the related blood disorders, diagnosed in 21,500 people in Britain every year.

Further information, including patient booklets, is available from:
· your nearest LRF voluntary fundraising Branch (see Yellow Pages)
· LRF, 43 Great Ormond Street, London, WC1N 3JJ tel 020 7269 9068; emailinfo@lrf.org.uk; www.lrf.org.uk.

Joanne Fryer | alfa

More articles from Health and Medicine:

nachricht Diabetes mellitus: A risk factor for early colorectal cancer
27.05.2020 | Nationales Centrum für Tumorerkrankungen (NCT) Heidelberg

nachricht Ultra-thin fibres designed to protect nerves after brain surgery
27.05.2020 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Black nitrogen: Bayreuth researchers discover new high-pressure material and solve a puzzle of the periodic table

29.05.2020 | Materials Sciences

Argonne researchers create active material out of microscopic spinning particles

29.05.2020 | Materials Sciences

Smart windows that self-illuminate on rainy days

29.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>