Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

18F-FDG PET predicts lymphoma treatment outcome

05.08.2002


A new and somewhat controversial study published in the August issue of the Journal of Nuclear Medicine suggests that 18F-FDG PET results obtained after the first cycle of treatment can better predict progression-free survival in patients with aggressive non-Hodgkin’s lymphoma (NHL) or Hodgkin’s disease (HD) than PET scans conducted at the end of treatment.



Physicians at the Weill Medical College of Cornell and the New York Presbyterian Hospital in New York reported on 23 patients who received PET scans before and after one cycle of treatment and also at the completion of chemotherapy. PET was accurate 87% of the time after one cycle but only 70% of the time after completion of chemotherapy. Sensitivity, i.e., the ability to detect the FDG and hence disease, was also significantly higher after one cycle, at 82% v. 45.5%. In particular, in cases in which results from the first cycle differed from the results following completion of therapy, the results from the first cycle scan were more accurate. Ninety percent of patients with positive 18F-FDG PET results after one cycle experienced disease relapse, while 85% who had negative 18F-FDG PET findings after one cycle remained in remission. The authors concluded that PET was a better predictor of outcome and response to therapy after just one cycle of chemotherapy than after completion.

PET stands for positron emission tomography. Because of its unique ability to measure metabolic activity–or the efficiency of the cells converting food to energy--PET provides accurate, noninvasive detection and staging of many cancers. A radiopharmaceutical, such as 18F-FDG (fluorodeoxyglucose), which includes a radionuclide (a radioactive element) is injected into the patient and gives off signals that are measured by a PET scanner. Because cancer cells are more metabolically active, they show up on the PET images more intensely than normal tissue.


Using 18F-FDG PET to predict outcomes and response to therapy early in treatment is one of the most important new uses of this technology. It is particularly helpful in lymphoma, where tumors can persist after successful treatment. Conventional imaging with CT or MRI has difficulty differentiating between residual masses harboring tumor and those that are scar tissue. Determining at what point during chemotherapy a PET study should be ordered is a major issue in the nuclear medicine community. Debate continues regarding the timing of and access to this procedure.

The study also looked specifically at the results for patients whose diagnosis or original staging placed them in the category of poor-prognosis, and found similar results for this group. According to the study authors, 18F-FDG PET may be especially useful for these patients, since early evidence of persistent disease may mandate innovative intervention such as bone marrow transplantation.

The study reported a statistically significant number of false negatives in patients who had completed treatment, which contributed to its lower value as a predictor at the end of treatment. Six patients who had a false-negative FDG uptake at the completion of treatment ultimately relapsed. The authors noted that this could be the result of small amounts of disease that remained and escaped detection because of the resolution limitations of the coincidence PET scanner used in the study.

In a commentary accompanying the article in JNM, Val Lowe, MD and Gregory Wiseman, MD, of the Department of Radiology at the Mayo Clinic took issue with parts of the study’s findings, and elements of the study makeup. While commending the authors’ objectives, Lowe and Wisemen noted that the use of a coincidence rather than dedicated full-ring PET camera, which has less sensitivity, could have affected the results, particularly as they related to end-of-cycle findings of disease. They pointed to studies that showed dedicated PET at the completion of therapy had a 91% sensitivity in predicting disease relapse (v. the 45.5% in the Kostakoglu study). Nevertheless, the study authors emphasize the fact that failure to achieve a response can be predicted just after one cycle of therapy at which time second-line therapy or stem cell transplantation can be considered earlier prior to completing the full course of chemotherapy, without patients experiencing unnecessary side effects.

Lowe and Wiseman also expressed concerns about the size and makeup of the study group, noting that there were only 30 patients enrolled (the study report focuses on 23). The fact that it was a small study looking at different diseases, being treated differently, and at different points in their treatments make it difficult to make meaningful comparisons, they felt. According to the American Cancer Society, there will be an estimated 60,900 new cases of lymphoma in 2002, including 7,000 cases of Hodgkin’s disease and 53,900 cases of non-Hodgkin’s lymphoma. An estimated 25,800 people will die from the disease (24,400 NHL, 1400 HD)

"PET Predicts Prognosis After 1 Cycle of Chemotherapy in Aggressive Lymphoma and Hodgkin’s Disease" was written by Lale Kostakoglu, MD, Division of Nuclear Medicine, Department of Radiology; Morton Coleman, MD, and John P. Leonard, MD, Center for Lymphoma and Myeloma, Division of Hematology and Oncology, Department of Medicine; Ichiei Kuji, MD, Holly Zoe, and Stanley J. Goldsmith, MD, Division of Nuclear Medicine, Department of Radiology, Weill Medical College of Cornell University and New York Presbyterian Hospital, New York, New York.


Copies of the article and images related to the study and the commentary are available to media upon request to Karen Lubieniecki at Karenlub@aol.com, (703) 683-0357. Copies of this and past issues of The Journal of Nuclear Medicine are available online at jnm.snmjournals.org. Print copies can be obtained at $15 per copy by contacting the SNM Service Center, Society of Nuclear Medicine, 1850 Samuel Morse Drive, Reston, VA 20190-5315; phone: (703) 326-1186; fax: (703) 708-9015; e-mail: servicecenter@snm.org. A yearly subscription to the journal is $170. A journal subscription is a member benefit of the Society of Nuclear Medicine.

Karen Lubieniecki | EurekAlert!
Further information:
http://www.snm.org/

More articles from Health and Medicine:

nachricht Radioisotope couple for tumor diagnosis and therapy
14.05.2019 | Kanazawa University

nachricht Therapy Optimisation by Analysing the Genome
13.05.2019 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Im Focus: Recording embryonic development

Scientists develop a molecular recording tool that enables in vivo lineage tracing of embryonic cells

The beginning of new life starts with a fascinating process: A single cell gives rise to progenitor cells that eventually differentiate into the three germ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Discovering unusual structures from exception using big data and machine learning techniques

17.05.2019 | Materials Sciences

ALMA discovers aluminum around young star

17.05.2019 | Physics and Astronomy

A new iron-based superconductor stabilized by inter-block charger transfer

17.05.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>