Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improved culture system for hepatitis C virus infection

16.07.2008
A University of California, San Diego School of Medicine researcher has developed the first tissue culture of normal, human liver cells that can model infection with the Hepatitis C virus (HCV) and provide a realistic environment to evaluate possible treatments.

The novel cell line, described in the July 16 issue of PLoS ONE, will allow pharmaceutical companies to effectively test new drug candidates or possible vaccines for the HCV infection, which afflicts about 170 million people worldwide. Currently, there is no animal model that is effective for testing such therapies.

Assistant Professor of Medicine Martina Buck, Ph.D., researcher at UC San Diego's Department of Medicine and Moores UCSD Cancer Center developed the novel culture system, which mimics the biology of HCV infection in humans.

"This is the first efficient and consistent model system for HCV to be developed," said Buck, adding that it will now enable researchers not only to conduct mechanistic experiments in culture, such as blocking the virus pathways, but also to more effectively screen possible therapies for HCV. "There is a need for new treatments, and for development of a possible vaccine for HCV. Now we have a model system to support work by investigators in this area."

Currently, there is only a single treatment for HCV, PEG- interferon-á. The drug combination has an average response rate of about 50 percent in HCV cases, but it is much lower than that, closer to 20 percent, in individuals with liver cirrhosis. It can also cause severe flu-like side effects. Approximately 10,000 deaths due to cirrhosis of the liver and several thousand more from liver cancer are attributed to HCV infection in the United States each year.

The HCV life cycle is only partially understood because, until now, it has not been possible to efficiently infect normal human hepatocytes, or liver cells, in culture. According to Buck, the valuable Huh-7 system currently in use to test HCV uses cloned, synthetic HCV RNA expressed from liver tumor cells. These cells cannot be infected with naturally occurring HCV obtained from infected patients.

In contrast, the culture developed by the UCSD scientists allows direct infection with HCV genotypes 1, 2, 3 and 4 from the blood of HCV-infected patients. This system will enable researchers to study the complete viral lifecycle in its normal host cell, providing novel scientific opportunities. The study reports that the system has been tested using over 30 virus donors as well as multiple donors of hepatocytes, with the production of infectious HCV for all genotypes tested.

Debra Kain | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Health and Medicine:

nachricht Purdue cancer identity technology makes it easier to find a tumor's 'address'
16.11.2018 | Purdue University

nachricht Microgel powder fights infection and helps wounds heal
14.11.2018 | Michigan Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

New materials: Growing polymer pelts

19.11.2018 | Materials Sciences

Earthquake researchers finalists for supercomputing prize

19.11.2018 | Information Technology

Controlling organ growth with light

19.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>