Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improved culture system for hepatitis C virus infection

16.07.2008
A University of California, San Diego School of Medicine researcher has developed the first tissue culture of normal, human liver cells that can model infection with the Hepatitis C virus (HCV) and provide a realistic environment to evaluate possible treatments.

The novel cell line, described in the July 16 issue of PLoS ONE, will allow pharmaceutical companies to effectively test new drug candidates or possible vaccines for the HCV infection, which afflicts about 170 million people worldwide. Currently, there is no animal model that is effective for testing such therapies.

Assistant Professor of Medicine Martina Buck, Ph.D., researcher at UC San Diego's Department of Medicine and Moores UCSD Cancer Center developed the novel culture system, which mimics the biology of HCV infection in humans.

"This is the first efficient and consistent model system for HCV to be developed," said Buck, adding that it will now enable researchers not only to conduct mechanistic experiments in culture, such as blocking the virus pathways, but also to more effectively screen possible therapies for HCV. "There is a need for new treatments, and for development of a possible vaccine for HCV. Now we have a model system to support work by investigators in this area."

Currently, there is only a single treatment for HCV, PEG- interferon-á. The drug combination has an average response rate of about 50 percent in HCV cases, but it is much lower than that, closer to 20 percent, in individuals with liver cirrhosis. It can also cause severe flu-like side effects. Approximately 10,000 deaths due to cirrhosis of the liver and several thousand more from liver cancer are attributed to HCV infection in the United States each year.

The HCV life cycle is only partially understood because, until now, it has not been possible to efficiently infect normal human hepatocytes, or liver cells, in culture. According to Buck, the valuable Huh-7 system currently in use to test HCV uses cloned, synthetic HCV RNA expressed from liver tumor cells. These cells cannot be infected with naturally occurring HCV obtained from infected patients.

In contrast, the culture developed by the UCSD scientists allows direct infection with HCV genotypes 1, 2, 3 and 4 from the blood of HCV-infected patients. This system will enable researchers to study the complete viral lifecycle in its normal host cell, providing novel scientific opportunities. The study reports that the system has been tested using over 30 virus donors as well as multiple donors of hepatocytes, with the production of infectious HCV for all genotypes tested.

Debra Kain | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Health and Medicine:

nachricht Deep stimulation improves cognitive control by augmenting brain rhythms
04.04.2019 | Picower Institute at MIT

nachricht Black nanoparticles slow the growth of tumors
04.04.2019 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>