Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Corneal Transplant Technique Shows Promise in Children

15.07.2008
For infants and children with blinding diseases of the cornea, a sophisticated new corneal transplantation technique offers the hope of improving vision while overcoming the technical difficulty and low success rate of traditional penetrating keratoplasty (PK) in children, according to reports in the current issue of the Journal of AAPOS (American Association for Pediatric Ophthalmology and Strabismus).

The issue includes two case reports on the successful use of "Descemet stripping automated endothelial keratoplasty" (DSAEK) in children with corneal disease. If the promising results are borne out by further research, DSAEK could provide an alternative to traditional corneal transplantation—a notoriously difficult procedure in children, failing more often than it succeeds.

Dr. Bennie H. Jeng and colleagues of The Cleveland Clinic Cole Eye Institute performed DSAEK in a 21-month-old boy, while Dr. Mark M. Fernandez and colleagues of Duke University Eye Center report the results of DSAEK in a 9-year-old boy. Both children had irreversible damage to the corneal endothelium—a specialized, single-cell layer at the rear (posterior) of the cornea—after complications of cataract surgery.

In DSAEK, the diseased endothelium is removed and replaced by a "button" of healthy endothelium from a cornea donor. After careful handling and meticulous placement, the button is held in place for the first 24 hours by nothing more than a bubble of air—during this time, the patient must lie flat to keep the air bubble and transplant in place.

In adults, DSAEK is currently "in vogue" as an alternative to traditional penetrating keratoplasty, according to a commentary by Dr. Kathryn Colby of Massachusetts Eye and Ear Infirmary, Harvard Medical School. DSAEK offers several advantages over PK. One key advantage is much more rapid recovery of vision—within 6 to 12 weeks after DSAEK, compared to 6 to 12 months with traditional PK surgery.

Shorter recovery time is especially important in young children with developing vision, who are at risk of further, potentially severe vision loss (amblyopia). Both children in the case reports had good results, showing improved vision within a few months after DSAEK.

Because is less invasive, DSAEK also has a lower risk of certain complications compared to PK. Postoperative management is simplified because no sutures are placed in the cornea.

Many questions remain regarding the use of DSAEK in children. Since most children who need corneal transplants have other abnormalities as well, DSAEK would be an option in only about 20 percent of cases. The need to have the patient lie flat for 24 hours after surgery poses challenges in young children, and concerns about potential complications and long-term results have to be addressed. Other treatment options are emerging as well, including the use of an artificial cornea or "keratoprosthesis."

Meanwhile, DSAEK offers an exciting new treatment possibility at least for some children with corneal disease. "We now have an expanded repertoire of better surgical options for children needing PK," Dr. Colby concludes. "The future is bright for those who undertake these challenging, but potentially life-changing, surgeries."

Jayne Dawkins | alfa
Further information:
http://www.elsevier.com

More articles from Health and Medicine:

nachricht Researchers find trigger that turns strep infections into flesh-eating disease
19.02.2019 | Houston Methodist

nachricht Loss of identity in immune cells explained
18.02.2019 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

New therapeutic approach to combat African sleeping sickness

20.02.2019 | Life Sciences

Powering a pacemaker with a patient's heartbeat

20.02.2019 | Medical Engineering

The holy grail of nanowire production

20.02.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>