Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Heart death risk cut by early warning drugs tests

14.07.2008
The likelihood of people dying because their medication has a side effect that affects the electrical activity of the heart is being reduced – thanks to a better understanding of why this happens and the development of tests to predict it.

The progress made on this topic will be discussed by leading scientists at The Federation of European Pharmacological Societies (EPHAR) 2008 Congress in Manchester on Monday, 14 July, 2008.

Many kinds of medicine are associated with this adverse drug reaction, which initially involves a slowing of the electrical recovery of the heart each time it beats – known as QT prolongation.

Although this effect is not in itself dangerous, in a small percentage of people, particularly those with existing heart problems, it may lead to a potentially fatal abnormal heart rhythm known as Torsades de Pointes (TdP).

The symposium at the University of Manchester will review how tests done before potential new medicines are given to patients can be used to assess the probability that a drug will lead to QT prolongation or to the actual risk (TdP).

Leading European researchers will meet at the conference, which is hosted by the British Pharmacological Society, to discuss what early testing is done, how the results are used, how good they are at predicting effects on electrical activity in the human heart and what areas there may be for improvement.

Symposium organizer Dr Jean-Pierre Valentin of AstraZeneca R&D, Alderley Park, Cheshire, says that although significant progress has been made, which has decreased the number of old and new drugs carrying this cardiac safety risk, there is still more work to be done before strategies for assessing the risk are optimal.

He said: "The work being discussed is just one element of a discipline known as safety pharmacology. This involves determining which drug side effects could potentially be life-threatening and then trying to put in place tests that predict whether a given chemical might have one of these serious side effects in humans.

“By law, these tests must be done before a potential drug is first given to humans. In this way, the ultimate aim is to discover new medicines that can be developed rapidly and safely without causing any side-effects.

Dr Valentin continued: "Because the biology of the human body is so complex, no single group has the resources or breadth of knowledge to devise the best possible approach to predicting and preventing a given side effect. Rapid progress therefore needs academic and pharmaceutical company pharmacologists, doctors, government agencies and patients to collaborate as much as possible in order to share their knowledge and data. The symposium is just one mechanism for trying to achieve this.

Speaking specifically about TdP he said: "Until recently, the first indication that a drug carried a TdP risk was in patients, and, since it is a rare side-effect, this was only after millions patients had taken the drug.

“Although the low incidence of TdP might suggest relatively little need for concern, some of the medicines causing TdP were only for minor treatments such as hay fever, in which case the safety risk of the drug far outweighed the benefit to the patient.

"Medicines for non life-threatening diseases that are known to cause TdP in man are no longer available, but for serious conditions, such as cancer, the risk of TdP is far lower than the risk of dying from cancer so the use of such drugs in still justified but requires very careful, additional monitoring by doctors.

“Therefore, the challenge is to be able to produce medicines for all health issues, irrespective of their severity, that carry no TdP risk. This is particularly important because of the large number of people with cardiovascular diseases that would increase their TdP risk - such as those with high blood pressure, high cholesterol and diabetes.

"The most important advance in understanding this side-effect was the realisation, based on the work of many scientists, that the fundamental cause is most likely to be the drug sticking to a particular protein in the heart.

“This information is crucial, since once this protein - known as hERG - was identified, tests could be developed that could be done in a test tube and were so simple that hundreds of different chemical structures could be tested in a working day. This massively increases the chances that the chemists making the potential drugs can find one that doesn't stick to hERG and therefore is unlikely to cause TdP.

"An important additional benefit from testing many compounds is that data for the activity of each compound can be fed into computer models that are ‘trained’ to predict the likely activity of compounds designed in a computer. This so-called ‘virtual screening’ allows thousands of compounds to be ‘tested’ per day.

"While these tests significantly reduce the risk that a new medicine will cause TdP, there are other factors. At this symposium we want in particular to assess how good our current tests are at predicting the outcome in man, and how best we can predict other drug effects leading to TdP. The learning points from the hERG and TdP story are important not just for this particular side-effect but for safety pharmacology in general."

The theme of drug safety will be continued at EPHAR 2008 on Monday, with Prof Pierluigi Nicotera, Director of the MRC Toxicology Unit, University of Leicester, delivering a plenary lecture titled ‘Understanding Molecular Mechanisms of Cell Injury and Death: a Way to Improve Drug Safety and Design’.

Prof Nicotera said: “My research is focused on the mechanisms that decide death or survival of brain cells. The Unit is working to clarify which are the most relevant targets in disease processes regardless of the origin of disease – both common human diseases and diseases caused by toxic chemicals.

“By doing so we aim to understand common patterns of tissue responses to injury that can be targeted by new drugs. This could also lead to understand adverse drug reactions and cytotoxic processes occurring in organs following chemical exposure.”

Alex Waddington | alfa
Further information:
http://www.stem-media.co.uk

More articles from Health and Medicine:

nachricht The genes are not to blame
20.07.2018 | Technische Universität München

nachricht Targeting headaches and tumors with nano-submarines
20.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>