Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Counting tumor cells in blood predicts treatment benefit in prostate cancer

08.07.2008
ESMO Conference Lugano

Counting the number of tumor cells circulating in the bloodstream of patients with castration-resistant prostate cancer can accurately predict how well they are responding to treatment, new results show.

At the ESMO Conference Lugano (ECLU) organized by the European Society for Medical Oncology, researchers showed that changes in the number of circulating tumor cells predicted the outcome after chemotherapy in this hard to treat cancer.

"The results add to a growing body of evidence showing that counting these cells is a valuable method for predicting survival and for monitoring treatment benefit in these patients", said Dr. David Olmos from The Royal Marsden NHS Foundation Trust in the UK.

"Our study shows that circulating tumor cell counts could provide information about how patients are responding to therapy earlier than other markers such as prostate-specific antigen (PSA) or time-to-disease progression," he said. "We have observed that patients with declining numbers of circulating tumor cells can see a change in their initial prognosis, reflecting a potential benefit from therapy."

Among the 119 patients in the study, researchers found that those with the lowest circulating cell counts had on average the longest survival.

"Cancer cells can be detected in the circulating blood by a range of methods", Dr. Olmos said. "The technique we used in our study is classified as a cytometric approach. We use an antibody that is widely expressed by epithelial cancer cells, and then use a range of cell-staining techniques to ensure it is a cancer cell."

"Because these circulating cells have broken away from either primary tumors or metastatic sites in other parts of the body, they could potentially be used to help study the specific characteristics of the cancer and perhaps personalize therapy", Dr. Olmos said.

Vanessa Pavinato | EurekAlert!
Further information:
http://www.esmo.org

More articles from Health and Medicine:

nachricht UC San Diego researchers develop sensors to detect and measure cancer's ability to spread
06.12.2018 | University of California - San Diego

nachricht New cancer immunotherapy approach turns immune cells into tiny anti-tumor drug factories
05.12.2018 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

Inaugural "Virtual World Tour" scheduled for december

28.11.2018 | Event News

 
Latest News

A new molecular player involved in T cell activation

07.12.2018 | Life Sciences

High-temperature electronics? That's hot

07.12.2018 | Materials Sciences

Supercomputers without waste heat

07.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>