Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sunburn alert: UVB does more damage to DNA than UVA

03.07.2008
New report in the FASEB Journal may lead to independence from skin cancer

As bombs burst in air this July 4, chances are that sunburn will be the red glare that most folks see – and feel. But unfortunately, even when there is no burn, the effects of the sun's ultraviolet (UV) rays can have deadly consequences.

Thanks to a new research study published in the July 2008 issue of The FASEB Journal, scientists now know why one type of UV light (UVB) is more likely to cause skin cancer than the other (UVA). This information should be useful to public health officials and government regulatory agencies in identifying specific criteria for exactly how effective consumer products, like sunscreen, are in preventing skin damage leading to skin cancer. It should also allow scientists to pursue new lines of research and treatment into repairing the damage caused by the sun's rays.

"Our study is novel in that it fills the gaps in knowledge of mechanisms involved in sunlight-associated skin cancers, which cover various aspects of DNA damage and repair and genetic alterations," said Ahmad Besaratinia, PhD, Assistant Research Scientist at City of Hope National Medical Center and first author on the report.

According to researchers from City of Hope National Medical Center in Duarte, California, UVB light is more harmful to our skin because our bodies are less able to repair the DNA damage it causes than the damage caused by UVA light. To reach their conclusions, scientists exposed three sets of cells to UVA light, UVB light and simulated sunlight. Then they compared these cells to an unexposed control group to analyze how well these cells were able to repair the damage. In addition, they analyzed published data on the genetics involved in human skin cancers. The researchers found that cells were more easily able to repair the damage caused by the UVA light, which explains why UVA light has been perceived as "safer" than UVB light. Despite this perception, scientists and public health experts caution that UVA light can and does cause serious damage that can and does lead to skin cancer.

"We know that sunlight causes skin cancer and that breakdown of the ozone layer exposes us to ever more ultraviolet radiation. This work tells us that both forms of UVA and UVB in sunlight cause damage to DNA. It forms a missing link in the chain of events from sun exposure to tumor formation," said Gerald Weissmann, MD, Editor-in-Chief of The FASEB Journal. "This research article gives us information that could lead to better sunscreens or effective 'after sun' products. It promises new ways to prevent - and perhaps to treat - the epidemic of skin cancer brought on by modern life."

Cody Mooneyhan | EurekAlert!
Further information:
http://www.fasebj.org

More articles from Health and Medicine:

nachricht New flexible, transparent, wearable biopatch, improves cellular observation, drug delivery
12.11.2018 | Purdue University

nachricht Exosomes 'swarm' to protect against bacteria inhaled through the nose
12.11.2018 | Massachusetts Eye and Ear Infirmary

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

Im Focus: Nanorobots propel through the eye

Scientists developed specially coated nanometer-sized vehicles that can be actively moved through dense tissue like the vitreous of the eye. So far, the transport of nano-vehicles has only been demonstrated in model systems or biological fluids, but not in real tissue. The work was published in the journal Science Advances and constitutes one step further towards nanorobots becoming minimally-invasive tools for precisely delivering medicine to where it is needed.

Researchers of the “Micro, Nano and Molecular Systems” Lab at the Max Planck Institute for Intelligent Systems in Stuttgart, together with an international...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

In focus: Peptides, the “little brothers and sisters” of proteins

12.11.2018 | Life Sciences

Materials scientist creates fabric alternative to batteries for wearable devices

12.11.2018 | Materials Sciences

A two-atom quantum duet

12.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>