Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Opioids and cannabinoids influence mobility of spermatozoids

20.06.2008
A PhD thesis from the University of the Basque Country has concluded that there are opioid and cannabinoid receptors in human sperm and that these influence the mobility of spermatozoid. The research by Mr Ekaitz Agirregoitia opens the door to more effective treatment of fertility problems.

Freshly released spermatozoids cannot achieve fertilisation, they must undergo some changes for this to occur. Amongst other, such changes take place due to receptors situated in the plasmatic membrane (the layer covering the cells) and opioid and cannabinoid receptors are two of these.

On coming into contact with these, physiological reactions are generated in the body which are similar to, for example, sedation, analgesia and low blood pressure. Moreover, according to the research undertaken to date, both substances have an influence on the process of fertilisation.

It is known that the consumption of external opiates (heroin, methadone) reduces the mobility of spermatozoids and that external cannabinoids (hachis) causes changes in the reproductive process. Also, the body itself generates internal opioids and cannabinoids, secreted to enable us withstand pain or stress situations, and it is also known that this phenomenon affects the reproduction process.

Despite all this being previously known, there has been no thorough study of the opioid and cannabinoid receptors in the human sperm such as this one, carried out by Mr Ekaitz Agirregoitia Marcos for his PhD thesis, defended at the Faculty of Medicine and Odontology of the University of the Basque Country (UPV/EHU) and entitled in Basque, Opioide-hartzaileak eta kannabinoide-hartzaileak giza espermatozoideetan espresatzen dira eta haien mugikortasunean eragiten dute (Opioid receptors and cannabinoid receptors are expressed in human spermatozoids and influence their mobility).

The aim was to define this expression and the location of three opioid receptors and two cannabinoid receptors, as well as to analyse the influence of their activity in the mobility of spermatozoids. Mr Agirregoitia has a degree in Biology, specialising in Health Sciences. He is currently working as a substitute lecturer in the Department of Physiology, giving classes in Medical Biophysics and General Physiology. His PhD work was led by Dr. Jon Irazusta Astiazaran from the same Department and was undertaken in collaboration with Dr. Carmen Ochoa of the Euskalduna Clinic and Dr. Manolo Guzmán from the Complutense University in Madrid.

Pinpointing the receptors

This PhD has shown, for the first time, that all the types of opioid and cannabinoid receptors are found in human sperm. To date, only the MU opioid receptor has been found in equine sperm, and the presence in human sperm of the CB1 cannabinoid receptor was only discovered this year. Dr. Agirregoitia has used a number of techniques to find three opioid receptors (DELTA, KAPPA and MU) and two cannabinoid receptors (CB1 and CB2) in the human sperm. According to his research, all these are found at the head, the middle and the tail of the spermatozoids.

How is mobility influenced?

After defining the expression and location of the opioid and cannabinoid receptors, Dr. Agirregoitia initiated an analysis of their influence on the mobility of the spermatozoids. These receptors act like a kind of lock catch mechanism to which the opioids and cannabinoids attach themselves. Some of these substances (agonists) are capable of activating the cells, just like a key opening a lock. Others (antagonists), although fitting perfectly into the “locks”, are not capable of opening them and have the effect of blocking the receptor. Mr Agirregoitia studied both processes, incubating human sperm with agonist and antagonist synthetic substances to this end.

From this PhD thesis, presented at the UPV/EHU, it was concluded that, for the movement of the spermatozoids to be maintained, a minimum number of DELTA receptors must remain active. On the other hand, it is pointed out that the activation of the MU opioid receptor inhibits the mobility of the spermatozoids, i.e. it causes them to slow down. Finally, the PhD concludes that the KAPPA opioid receptor participates in another process which has nothing to do with mobility.

As regards the cannabinoid system, the activation of the CB1 y CB2 receptors causes the percentage of spermatozoids with rapid and progressive mobility to be reduced. Even so, as a consequence of the activation of the CB1 receptor, the number of slow spermatozoids rises, while the activation of CB2 increases the number of spermatozoids with progressive but slow movement.

The most effective diagnoses and treatments

It is known that opiods and cannabinoids regulate the function of reproduction through the central nervous system and, according to this PhD thesis, they are also able to control the process through the receptors located in the spermatozoids themselves. Thus, the type and concentration of internal opioids and cannabinoids found in the spermatozoid on its way to the egg will condition its mobility.

This work opens the door – in the medium to long term – to the diagnosis and treatment of numerous pathologies. For example, an analysis of the components of the system of opioid and cannabinoid receptors would enable us to better understand fertility problems due to currently unknown causes, exhibited by both spermatozoids as well as the female reproductive organ. Also, when designing treatment aimed at fomenting the mobility of spermatozoids, it will enable the prescribing of treatment that activates or inhibits the appropriate receptor in order to benefit the process of fertilisation.

Alaitz Ochoa de Eribe | alfa
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Berri_Kod=1802&hizk=I

More articles from Health and Medicine:

nachricht New nanomedicine slips through the cracks
24.04.2019 | University of Tokyo

nachricht Sugar entering the brain during septic shock causes memory loss
23.04.2019 | Rensselaer Polytechnic Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unprecedented insight into two-dimensional magnets using diamond quantum sensors

For the first time, physicists at the University of Basel have succeeded in measuring the magnetic properties of atomically thin van der Waals materials on the nanoscale. They used diamond quantum sensors to determine the strength of the magnetization of individual atomic layers of the material chromium triiodide. In addition, they found a long-sought explanation for the unusual magnetic properties of the material. The journal Science has published the findings.

The use of atomically thin, two-dimensional van der Waals materials promises innovations in numerous fields in science and technology. Scientists around the...

Im Focus: Full speed ahead for SmartEEs at Automotive Interiors Expo 2019

Flexible, organic and printed electronics conquer everyday life. The forecasts for growth promise increasing markets and opportunities for the industry. In Europe, top institutions and companies are engaged in research and further development of these technologies for tomorrow's markets and applications. However, access by SMEs is difficult. The European project SmartEEs - Smart Emerging Electronics Servicing works on the establishment of a European innovation network, which supports both the access to competences as well as the support of the enterprises with the assumption of innovations and the progress up to the commercialization.

It surrounds us and almost unconsciously accompanies us through everyday life - printed electronics. It starts with smart labels or RFID tags in clothing, we...

Im Focus: Energy-saving new LED phosphor

The human eye is particularly sensitive to green, but less sensitive to blue and red. Chemists led by Hubert Huppertz at the University of Innsbruck have now developed a new red phosphor whose light is well perceived by the eye. This increases the light yield of white LEDs by around one sixth, which can significantly improve the energy efficiency of lighting systems.

Light emitting diodes or LEDs are only able to produce light of a certain colour. However, white light can be created using different colour mixing processes.

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...
All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

Hopkins researchers ID neurotransmitter that helps cancers progress

26.04.2019 | Life Sciences

Unprecedented insight into two-dimensional magnets using diamond quantum sensors

26.04.2019 | Physics and Astronomy

Liquid crystals in nanopores produce a surprisingly large negative pressure

26.04.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>