Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New patented prophylactic mesh for the repair of defects in the abdominal wall

18.06.2008
Scientists from the University of Alcalá (UAH) have designed a prosthesis made of silicon and polypropylene shaped like an “upside down T” that substantially reduces cases of incisional hernias.

A hernia is produced when the content of the abdominal cavity protrudes through a weakened natural orifice of the abdominal wall such as the inguinal canal, the umbilical area, the epigastrium or a previous incision in the abdomen such as from a surgical operation.

The hernia manifests itself as a bulging lump since the internal lining of the abdomen protrudes in what is called a hernial sac that shrinks or grows depending on the effort exerted by the affected individual. Hernias are more frequent in the groin or navel areas and in the area of an old surgical scar, and they never improve or disappear naturally; on the contrary, they tend to grow. Not only painful but unaesthetic too, hernias can produce complications such as bowel obstructions and strangulations.

Primary hernias are produced by structural defects in tissues, while the incisional hernias arise from a previous aperture in the abdominal wall, usually the scar of a previous surgery. Irrespective of the techniques used, different types of sutures or medical devices used to hold the abdominal wall, the number of incisional hernias has been constant over the last decade. One of the most susceptible areas for their appearance is the linea alba, especially when oblique-transverse fibres are sectioned, which is what occurs in the longitudinal laparotomy procedures. The likelihood of a patient developing incisional hernias increases with associated risks, such as advanced age, neoplasia related surgery, obesity and related chronic pathologies.

Presented with these circumstances, a research group from the University of Alcalá managed by Professor Juan Manuel Bellón from the department of surgery of the UAH has developed and patented a new device to prevent the occurrence of incisional hernias. This prevention is carried out by the incorporation of prosthesis into the suture of the abdominal wall which is designed to increase the cohesive forces of the scar. The new design and concept of the prosthesis, named Laparomesh has the shape of a upside down T and is made with silicone and polypropylene, which are biomaterials that will not be absorbed by the body.

The goal of the Laparomesh is to create a reinforcement much like a tendon in the linea alba that would efficiently consolidate the suture of the laparotomy and significantly reduce the cases of incisional hernias. Different to the other prostheses of its type, the design by Professor Bellon and his team is placed neither above nor below, but it encloses both apertures of the abdominal wall, attaching itself to the different anatomical planes by means of a polypropylene suture.

Professor Bellón, stated that the current average number of cases of incisional hernias is around 15% to 20%, and it is estimated to reduce these numbers to 3%-4% using this newly patented mesh.

Oficina Información Científica | alfa
Further information:
http://www.madrimasd.org

More articles from Health and Medicine:

nachricht New nanomedicine slips through the cracks
24.04.2019 | University of Tokyo

nachricht Sugar entering the brain during septic shock causes memory loss
23.04.2019 | Rensselaer Polytechnic Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Full speed ahead for SmartEEs at Automotive Interiors Expo 2019

Flexible, organic and printed electronics conquer everyday life. The forecasts for growth promise increasing markets and opportunities for the industry. In Europe, top institutions and companies are engaged in research and further development of these technologies for tomorrow's markets and applications. However, access by SMEs is difficult. The European project SmartEEs - Smart Emerging Electronics Servicing works on the establishment of a European innovation network, which supports both the access to competences as well as the support of the enterprises with the assumption of innovations and the progress up to the commercialization.

It surrounds us and almost unconsciously accompanies us through everyday life - printed electronics. It starts with smart labels or RFID tags in clothing, we...

Im Focus: Energy-saving new LED phosphor

The human eye is particularly sensitive to green, but less sensitive to blue and red. Chemists led by Hubert Huppertz at the University of Innsbruck have now developed a new red phosphor whose light is well perceived by the eye. This increases the light yield of white LEDs by around one sixth, which can significantly improve the energy efficiency of lighting systems.

Light emitting diodes or LEDs are only able to produce light of a certain colour. However, white light can be created using different colour mixing processes.

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

High-efficiency thermoelectric materials: New insights into tin selenide

25.04.2019 | Materials Sciences

Salish seafloor mapping identifies earthquake and tsunami risks

25.04.2019 | Earth Sciences

Using DNA templates to harness the sun's energy

25.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>