Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U-M researchers discover traits of aggressive form of prostate cancer

10.06.2008
Discovery could lead to a diagnostic urine test

Researchers led by a team at the Michigan Center for Translational Pathology at the University of Michigan Health System have identified traits of an aggressive type of prostate cancer that occurs in about 10 percent of men who have the disease. They hope the discovery could lead, possibly within the next few years, to a simple urine test that will help to diagnose this variation of prostate cancer.

Previous studies by this group of researchers have shown that most prostate cancer is caused in part by a gene fusion – the merging of two unrelated genes, which plays a role in at least 50 percent of prostate cancer cases.

To shed light on the prostate cancers that don't involve gene fusion, the researchers in the current study analyzed data on 1,800 prostate cancers to find commonalities in their genetic aberrations. They learned that a gene called SPINK1 (serine peptidase inhibitor, Kazal type 1) was over-expressed, or found in excess amounts, in prostate cancers that do not have gene fusions. The finding suggests that SPINK1 is a biomarker – a molecule in bodily fluids, blood and tissue that can be a signal of a disease – for a subtype of prostate cancer.

The findings, reported in the June issue of the journal Cancer Cell, also suggest that men with SPINK1–related prostate cancers tend to have a quicker recurrence of the disease than those with other types of prostate cancer.

"Our study is really the first to look at what is happening molecularly with fusion-negative prostate cancers," says Scott Tomlins, Ph.D., first author of the paper and an M.D./Ph.D. student at the U-M Medical School.

"Because SPINK1 can be found non-invasively in urine, a test could be developed that would complement current urine testing that is used to detect some prostate cancer or future urine tests for gene fusions," adds senior author Arul Chinnaiyan, M.D., Ph.D., director of the Michigan Center for Translational Pathology and S.P. Hicks Endowed Professor of Pathology at the U-M Medical School.

An estimated 186,320 new cases of prostate cancer will be diagnosed this year, according to the National Cancer Institute, and more than 28,000 men will die from the disease this year. More than 70 percent of men diagnosed with prostate cancer are older than 65.

Current tests for prostate cancer include prostate-specific antigen (PSA) blood tests. Increased levels of PSA can indicate that prostate cancer is present. Another test is a digital rectal examination, which can detect abnormalities in the prostate. Another urine-based test screens for PCA3 as a specific biomarker of prostate cancer.

Background: In 2005, Chinnaiyan and his team made the landmark discovery that in prostate cancer, pieces of two chromosomes trade places with each other. This switch, or translocation, causes two unrelated genes to be placed next to each other and fuse together. The abnormal gene fusion associated with prostate cancer occurs when one of two genes, ERG or ETV1, merges with a prostate-specific gene called TMPRSS2.

Before this discovery, it was thought that gene fusions only occurred in blood cancers, such as leukemias and lymphomas, but not in common solid tumors such as prostate cancer. Chinnaiyan's discovery demonstrated that these gene fusions could be found in solid tumors and has opened an entire field of research. This discovery may lead to better diagnostic tests and new treatments for prostate cancer.

Earlier this year, Chinnaiyan's team published a study about a urine test that more accurately detects prostate cancer than any other screening method currently in use. They built on the PCA3 test by screening for six additional biomarkers and some molecules. In their research, the team accurately identified 80 percent of patients who were later found to have prostate cancer, and they were 61 percent effective in ruling out disease in other study participants.

Methodology: In the current study, the team used a bioinformatics analysis method called Cancer Outlier Profile Analysis (COPA) developed by Tomlins and Daniel Rhodes, Ph.D., in Chinnaiyan's laboratory. COPA makes it possible for researchers to detect extremely high expression levels of outlier genes, or genes with characteristics outside the norm.

Using data from seven studies, they found SPINK1 was over-expressed in prostate cancer when compared to benign prostate cells, and that it was found exclusively in cancers that did not involve ERG or ETV1 gene fusions.

For more information:

U-M Comprehensive Cancer Center mcancer.org
Michigan Center for Translational Pathology www.med.umich.edu/mctp/
Prostate cancer treatment at the U-M Comprehensive Cancer Center www.cancer.med.umich.edu/cancertreat/urologiconcology/prostate_cancer.shtml
New, non-invasive prostate cancer test beats PSA in detecting prostate cancer www2.med.umich.edu/prmc/media/newsroom/details.cfm?ID=54
National Cancer Institute prostate cancer information www.cancer.gov/cancertopics/types/prostate
Cancer Cell www.cancercell.org/
Chinniayan's HHMI page www.hhmi.org/research/investigators/chinnaiyan_bio.html
Patients seeking more information about currently available cancer treatments can call the Cancer AnswerLine at 800-865-1125.

Authors: In addition to Tomlins, Chinnaiyan and Rhodes, U-M researchers were from the Comprehensive Cancer Center, Michigan Center for Translational Pathology, Center for Computational Medicine and Biology, Department of Urology, Department of Biostatistics at the U-M School of Public Health, and the Howard Hughes Medical Institute.

In addition to the U-M research team, authors of the paper are from Brigham and Women's Hospital; Harvard Medical School; Dana-Farber Cancer Institute; Institute of Pathology, University, Hospitals Ulm, Germany; Örebro University Hospital, Sweden; Karolinska Institutet, Stockholm, Sweden; Memorial Sloan-Kettering Cancer Center; Helsinki University Central Hospital, Finland; and University Hospital UMAS, Lund University, Malmö, Sweden.

Funding sources: The study and researchers are supported by the Department of Defense, National Institutes of Health, Early Detection Research Network, Prostate Cancer Foundation, Clinical Translational Research Award from the Burroughs Wellcome Foundation, Medical Scientist Training Program, SPORE from the National Cancer Institute, and numerous international organizations.

Disclosure: U-M has filed for a patent on prostate cancer gene fusions and SPINK1 as biomarkers of prostate cancer on which Chinnaiyan, Tomlins, Rhodes and Rohit Mehra are named as inventors. This technology has been licensed to Gen-Probe Inc. to develop molecular diagnostics for prostate cancer. Chinnaiyan serves as a consultant to Gen-Probe.

Katie Vloet | EurekAlert!
Further information:
http://www.umich.edu

More articles from Health and Medicine:

nachricht Discovery shows promise for treating Huntington's Disease
05.08.2020 | Ecole Polytechnique Fédérale de Lausanne

nachricht Carbon monoxide improves endurance performance
05.08.2020 | Universität Bayreuth

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Rare Earth Elements in Norwegian Fjords?

06.08.2020 | Earth Sciences

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>