Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of new signal pathway important to diabetes research

04.06.2008
Scientists at Karolinska Institutet and Miami University have discovered that cells in the pancreas cooperate - signal - in a way hitherto unknown. The discovery can eventually be of significance to the treatment of diabetes.

The aim of the project was to find out how the healthy body regulates glucose concentrations in the blood.

Scientists have known for a long time that glucose is regulated with the help of hormones in the pancreas, which is to say that pancreatic beta cells produce insulin, which reduces sugar levels, and that alpha cells produce glucagon, which boosts them. This glucose balance must be kept within a very narrow interval, and we need both insulin and glucagon to remain in good health.

"A person with low blood sugar levels feels poorly and faint; a person with excessively high blood sugar levels gets diabetes," says Per-Olof Berggren, professor of experimental endocrinology at Karolinska Institutet and the leader of this study.

Much more is known about insulin secretion than glucagon secretion, and so Professor Berggren's team focused on the latter. They discovered that alpha cells also secreted glutamate, which facilitates glucagon release and makes it more efficient.

The scientists are working on the hypothesis that when glucose levels are raised in a healthy person, the beta cells become active and start to release insulin, which reduces sugar concentrations in the blood, upon which the alpha cells then start to secrete glucagon and glutamate. In this context, glutamate acts as a positive signal that tells the alpha cells that it is time to accelerate the production of glucagon to prevent glucose levels from falling too low.

"It's this signal pathway that is our discovery," says Professor Berggren. "This interaction between beta cells and alpha cells is crucial for normal blood sugar regulation."

The discovery also means that when the beta cells fail to produce insulin properly, as is the case in diabetes, the alpha cells' signal path is also blocked, which upsets the glucose balance even more. The team hope that their discovery of the signal pathway will eventually give new impetus to clinical diabetes research.

"Maybe we'll be able to achieve better blood sugar regulation in diabetes patients if we target more the glucagon/glutamate rather than just the insulin", says Professor Berggren.

Publication: 'Glutamate is a positive autocrine signal for glucagon release'. Authors: O Cabrera, MC Jaques-Silva, S Speier, S-N Yang, M Köler, A Fachado, E Vieira, JR Zierath, R Kibbey, DM Berman, NS Kenyon, C Ricordi, A Caicedo and P-O Berggren. Cell Metabolism, 4 June 2008.

For further information, please contact:

Professor Per-Olof Berggren,
Rolf Luft Centre for Diabetes and Endocrinology Research
Tel: +46(0)8-517 757 31
Email: per-olof.berggren@ki.se
Press Officer Katarina Sternudd
Tel: +46(0)8-524 838 95, +46(0)70-224 3895
Email: katarina.sternudd@ki.se
Karolinska Institutet is one of the leading medical universities in Europe. Through research, education and information, Karolinska Institutet contributes to improving human health. Each year, the Nobel Assembly at Karolinska Institutet awards the Nobel Prize in Physiology or Medicine.

Katarina Sternudd | idw
Further information:
http://www.ki.se

More articles from Health and Medicine:

nachricht New approach for targeted cancer immunotherapy
30.07.2020 | Universität Basel

nachricht A new way to target cancers using 'synthetic lethality'
28.07.2020 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

Im Focus: NYUAD astrophysicist investigates the possibility of life below the surface of Mars

  • A rover expected to explore below the surface of Mars in 2022 has the potential to provide more insights
  • The findings published in Scientific Reports, Springer Nature suggests the presence of traces of water on Mars, raising the question of the possibility of a life-supporting environment

Although no life has been detected on the Martian surface, a new study from astrophysicist and research scientist at the Center for Space Science at NYU Abu...

Im Focus: Manipulating non-magnetic atoms in a chromium halide enables tuning of magnetic properties

New approach creates synthetic layered magnets with unprecedented level of control over their magnetic properties

The magnetic properties of a chromium halide can be tuned by manipulating the non-magnetic atoms in the material, a team, led by Boston College researchers,...

Im Focus: A new method to significantly increase the range and stability of optical tweezers

Scientists of Tomsk Polytechnic University jointly with a team of the V.E. Zuev Institute of Atmospheric Optics of the Siberian Branch of the Russian Academy of Sciences have discovered a method to increase the operation range of optical traps also known

Optical tweezers are a device which uses a laser beam to move micron-sized objects such as living cells, proteins, and molecules. In 2018, the American...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Novel approach improves graphene-based supercapacitors

03.08.2020 | Information Technology

Germany-wide rainfall measurements by utilizing the mobile network

03.08.2020 | Information Technology

Drug discovery: First rational strategy to find molecular glue degraders

03.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>