Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The breathing lifeline that comes at a price

04.06.2008
The ventilators on an intensive care ward of a hospital offer a vital lifeline to the sickest and most vulnerable patients, providing the oxygen that keeps them alive when they are unable to breathe for themselves.

However, the use of these machines can come at a price — every year thousands of patients are left with debilitating lung injuries, a small number of which are so serious the patient never recovers.

Now, a research collaboration between the universities of Nottingham and Leicester is to use computer modelling of lungs based on information collected from real patients to look at the best way of using ventilators to treat patients while minimising the risk of injury.

Dr Jonathan Hardman, of The University of Nottingham’s Division of Anaesthesia and Intensive Care, said: “For patients who don’t have the ability to breathe for themselves there is simply no other option than using a ventilator — it’s like carrying someone who is just too exhausted to walk.

“However, the use of these ventilators — which mechanically inflate and deflate the lungs — can cause tearing. You can be faced with a situation where a patient comes into the intensive care unit with a survivable illness but dies from a ventilator-associated injury. If they do make it out of the ICU, they could be left with lungs so badly scarred it could affect them for the rest of their life.

“Ventilator-associated injuries also extend the length of time a patient needs to spend in intensive care, putting them at risk of developing an un-related infection or the degradation of the muscles needed for breathing independently. In addition, these extra days spent on the ICU represent a huge cost to the NHS and affects the UK economy through loss of earnings from patients who are sick for longer than is necessary.

“We also have to count the human cost — it can be extremely distressing for families of patients to have to see their loved one supported by a ventilator.”

The challenge for researchers investigating ventilator-associated lung injury has been how to effectively monitor and observe the lungs of patients while on life-support. It is impossible to get monitoring equipment into the lungs themselves and x-rays are unable to provide the level of definition and clarity needed.

The £432,000 research project, funded by the Engineering and Physical Sciences Research Council (EPSCR) will see Dr Hardman working with control engineer Dr Declan Bates at The University of Leicester to produce believable computer models of lungs. These could be used to test a range of different uses of the ventilator, for example, varying the amount of oxygen supplied to the patient or the number of breaths per minute provided by the machine.

Real-life data collected in the autumn by researchers from patients on the Intensive Care Unit at Nottingham’s Queen’s Medical Centre will be used to create the computer models. The results of that work will then be taken out into clinical trials.

Dr Hardman said: “We plan to recreate a population of patients with a variety of illnesses and injuries which will allow us to look at the different permutations of treatment for those. Eventually this could lead to computer management of ventilators which will provide the optimum treatment with the least risk of injury.”

Emma Thorne | alfa
Further information:
http://www.nottingham.ac.uk

More articles from Health and Medicine:

nachricht Neutrons produce first direct 3D maps of water during cell membrane fusion
21.09.2018 | DOE/Oak Ridge National Laboratory

nachricht Narcolepsy, scientists unmask the culprit of an enigmatic disease
20.09.2018 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

 
Latest News

Astrophysicists measure precise rotation pattern of sun-like stars for the first time

21.09.2018 | Physics and Astronomy

Brought to light – chromobodies reveal changes in endogenous protein concentration in living cells

21.09.2018 | Life Sciences

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

VideoLinks
Science & Research
Overview of more VideoLinks >>>