Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stanford researchers switch off cancer gene; trick cells to self desruct

05.07.2002


Researchers at Stanford University Medical Center have tricked cancer cells into self- destructing by briefly disabling a cancer-causing gene. Although the gene revs back up after deactivation, the brief hiatus gives the affected cells a chance to alter their cancerous destiny. This work in mice could open new avenues for treating some human cancers, researchers believe.



Cancer usually results after a cell accumulates a handful of mutations in cancer-related genes called oncogenes or tumor-suppressor genes. Researchers had thought that cancer cells would side-step attempts to fix any single genetic change, especially after treatment ends. But in a study published in the July 5 issue of Science, researchers found that by briefly tinkering with only one mutant gene they could forever alter the course of the cancer.

"Nobody had ever seen that turning off a cancer gene for a few days caused irreversible change," said Dean Felsher, MD, PhD, assistant professor of oncology and lead researcher on the study. "Most people thought that cancer would come back once treatment that turned off an oncogene stopped."


Felsher and his colleagues worked with a gene called MYC, which normally tells a cell when to grow or divide. In many types of cancers, such as lymphoma, breast, colon, and prostate, this gene produces excess protein that allows the rapid growth characteristic of cancer cells. "Anything you learn about MYC should be applicable to a lot of tumors," Felsher said. He added that because the gene is so important, any results may carry significant weight.

Felsher created bone cancer cells containing an altered version of MYC that could be shut down by adding a molecular off switch. He then injected those cells into mice, which went on to develop bone cancer. When he fed mice the off switch, MYC production stopped and the cancer cells quickly reverted to normal bone cells. After 10 days, he stopped treatment, allowing the gene to resume churning out protein. Instead of restarting cancerous growth, the cells died.

Mice that had their MYC gene switched off for 10 days survived four times longer than untreated mice with bone cancer. The cancer resurfaced in some of the treated mice, but went back into remission with another round of temporary MYC-disabling treatment. "You don’t always need to shut the oncogene off permanently," Felsher said. "That could change the way you think about treating cancer."

Felsher cautioned that his current results may not apply to all cancers. His previous work shows that MYC - like all oncogenes - is a complicated gene that can contribute to cancer by many different mechanisms. Depending on which role the gene is playing in the cell, the effects of shutting it off may vary. "We are trying to understand the genetics of when shutting off MYC will work," Felsher said.


Stanford University Medical Center integrates research, medical education and patient care at its three institutions - Stanford University School of Medicine, Stanford Hospital & Clinics and Lucile Packard Children’s Hospital at Stanford. For more information, please visit the Web site of the medical center’s Office of Communication & Public Affairs at http://mednews.stanford.edu.


Amy Adams | EurekAlert!
Further information:
http://mednews.stanford.edu

More articles from Health and Medicine:

nachricht Cancer cells make blood vessels drug resistant during chemotherapy
02.07.2020 | Hokkaido University

nachricht Novel potassium channel activator which acts as a potential anticonvulsant discovered
02.07.2020 | The Mount Sinai Hospital / Mount Sinai School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

Im Focus: AI monitoring of laser welding processes - X-ray vision and eavesdropping ensure quality

With an X-ray experiment at the European Synchrotron ESRF in Grenoble (France), Empa researchers were able to demonstrate how well their real-time acoustic monitoring of laser weld seams works. With almost 90 percent reliability, they detected the formation of unwanted pores that impair the quality of weld seams. Thanks to a special evaluation method based on artificial intelligence (AI), the detection process is completed in just 70 milliseconds.

Laser welding is a process suitable for joining metals and thermoplastics. It has become particularly well established in highly automated production, for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

 
Latest News

Rising water temperatures could endanger the mating of many fish species

03.07.2020 | Life Sciences

Risk of infection with COVID-19 from singing: First results of aerosol study with the Bavarian Radio Chorus

03.07.2020 | Studies and Analyses

Efficient, Economical and Aesthetic: Researchers Build Electrodes from Leaves

03.07.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>