Bone repair using patient's stem cells comes closer

Hitherto it has been difficult to induce adult human stem cells to produce bone, e.g. in order to repair bone tissue. Researchers at the University of Twente have shown that if the enzyme PKA is previously activated in the stem cells in the lab, following implantation this results in substantial bone formation. This opens up new ways of repairing bone tissue using cell material from the patient. The researchers are publishing their work in the Proceedings of the National Academy of Sciences (PNAS).

In animals, ‘adult’ mesenchymal stem cells have already been used successfully to grow fresh bone. Bone formation using human adult stem cells, e.g. from bone marrow, has been less successful, which has hitherto limited the alternatives hospitals can offer for repairing damaged tissue other than spontaneous healing. Activating the PKA enzyme prior to implantation, however, produces a dramatic improvement in ‘in vivo’ bone growth. The cells can be observed maturing into bone cells already in the lab; once sown on a carrier and implanted in a mouse, the bone grows well.

Encouraging the neighbours
The enzyme protein kinase A (PKA) is responsible for many processes in a cell. The messenger ‘cyclic AMP’ activates PKA: adding it to the stem cells ensures that they stimulate one another, the researchers think. Not only does cyclic AMP promote maturation into bone cells; the cells themselves also secrete various substances that stimulate bone growth. This may explain why mesenchymal stem cells treated with cyclic AMP form significantly more bone than those without the stimulus.

The advantage of administering a bone-growth-stimulating substance in advance is that it can be removed just before implantation. Experiments to date have mainly used high concentrations of a bone-growth-stimulating hormone, e.g. incorporated in the carrier on which the cells are ‘sown’. In the new approach not only are the hormone concentrations lower, they also more closely resemble the cocktail of hormones normally involved in bone growth.

This is the second time in a short space of time that the researchers, led by Dr Jan de Boer, have published in PNAS: earlier this month they published an article on a major breakthrough in the use of embryonic stem cells to grow bone. Both methods are promising when it comes to repairing bone tissue in future using cells from the patient’s own body. Compact bioreactors will be developed to grow cells quickly into tissue that can be used in the operating theatre.

The research was carried out at the Tissue Regeneration Department of the University of Twente’s Institute for Biomechanical Technology (BMTI). The researchers collaborated with fellow scientists at UMC Utrecht and the Erasmus Medical Center in Rotterdam.

Media Contact

Wiebe van der Veen alfa

More Information:

http://www.utwente.nl/en

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

High-energy-density aqueous battery based on halogen multi-electron transfer

Traditional non-aqueous lithium-ion batteries have a high energy density, but their safety is compromised due to the flammable organic electrolytes they utilize. Aqueous batteries use water as the solvent for…

First-ever combined heart pump and pig kidney transplant

…gives new hope to patient with terminal illness. Surgeons at NYU Langone Health performed the first-ever combined mechanical heart pump and gene-edited pig kidney transplant surgery in a 54-year-old woman…

Biophysics: Testing how well biomarkers work

LMU researchers have developed a method to determine how reliably target proteins can be labeled using super-resolution fluorescence microscopy. Modern microscopy techniques make it possible to examine the inner workings…

Partners & Sponsors