Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

TU Delft robot Flame walks like a human

23.05.2008
Researcher Daan Hobbelen of TU Delft (The Netherlands) has developed a new, highly-advanced walking robot: Flame. This type of research, for which Hobbelen will receive his PhD on Friday 30 May, is important as it provides insight into how people walk. This can in turn help people with walking difficulties through improved diagnoses, training and rehabilitation equipment.

If you try to teach a robot to walk, you will discover just how complex an activity it is. Walking robots have been around since the seventies. The applied strategies can roughly be divided into two types. The first derives from the world of industrial robots, in which everything is fixed in routines, as is the case with factory robots. This approach can, where sufficient time and money are invested, produce excellent results, but there are major restrictions with regard to cost, energy consumption and flexibility.

Human
TU Delft is a pioneer of the other method used for constructing walking robots, which examines the way humans walk. This is really very similar to falling forward in a controlled fashion. Adopting this method replaces the cautious, rigid way in which robots walk with the more fluid, energy-efficient movement used by humans.

PhD student Daan Hobbelen has demonstrated for the first time that a robot can be both energy-efficient and highly stable. His breakthrough came in inventing a suitable method for measuring the stability of the way people walk for the first time. This is remarkable, as ‘falling forward’ is traditionally viewed as an unstable movement.

Next he built a new robot with which he was able to demonstrate the improved performance: Flame (see film). Flame contains seven motors, an organ of balance and various algorithms which ensure its high level of stability.

For instance, the robot can apply the information provided by its organ of balance to place its feet slightly further apart in order to prevent a potential fall. According to Hobbelen, Flame is the most advanced walking robot in the world, at least in the category of robots which apply the human method of walking as a starting principle.

Rehabilitation
Modelling the walking process allows researchers to construct two-legged robots which walk more naturally. More insight into the walking process can in turn help people with walking difficulties, for example through improved diagnoses, training and rehabilitation equipment. TU Delft is working on this together with motion scientists at VU University Amsterdam.

Hobbelen cites ankles as an example. These joints are a type of spring which can be used to define the best level of elasticity. Research conducted by Hobbelen into Flame’s ankles has provided motion scientists with more insight into this topic.

Football-playing robots
Over the next few years, TU Delft intends to take major steps forward in research into walking robots. These include developing walking robots which can ‘learn’, see and run.
One very special part of the robot research concerns football-playing robots. On Thursday 29 May, together with the University of Twente, TU Eindhoven and Philips, TU Delft will present the Dutch RoboCup team which is to participate in the 2008 RoboCup Soccer in China this summer.

This presentation will take place at TU Delft during the international Dynamic Walking 2008 conference held from 26-29 May. Biomechanics experts, motion scientists and robot experts will come together at this event to exchange expertise on the walking process.

Roy Meijer | alfa
Further information:
http://www.tudelft.nl/live/pagina.jsp?id=f58fa261-f359-4d83-81ce-78bc182750ea&lang=en

More articles from Health and Medicine:

nachricht Why might reading make myopic?
18.07.2018 | Universitätsklinikum Tübingen

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>