Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tracking influenza's every movement

21.05.2008
It’s the case of the missing flu virus. When the flu isn’t making people sick, it seems to just vanish. Yet, every year, everywhere on Earth, it reappears in the appropriate season and starts its attack. So where does it go when it disappears? Does it hibernate, lying dormant in a few people and preparing for its next onslaught? Does it bounce around from the Northern hemisphere to the Southern hemisphere and back, following the seasons?

Neither, it turns out. The virus’s breeding grounds are in Asia, a crew of virus-hunters has found, and it then teems out to take over the world anew each year. New varieties almost always evolve in Asia and then hitch a ride with travelers, spreading to Europe, Australia and North America and finally to South America, where they die away.

The work may make the flu vaccine even better than it already is. Because the flu virus is constantly evolving, scientists meet at the World Health Organization twice a year to decide whether to update the vaccine. Their job is made harder because they have to decide on a formulation a year in advance of when the flu will actually hit, to allow time for the vaccine to be manufactured and administered. So they have to predict which of the strains of flu virus are going to be causing the most disease a year down the line.

“In order to try to predict how flu viruses might evolve, we have to understand how they’re moving around the world and where they’re evolving,” says Derek Smith, now of the University of Cambridge and formerly of the Santa Fe Institute, corresponding author of the research. Asia, the study suggests, is the best place to look for up-and-coming strains.

The team published its findings April 18 in Science (http://www.sciencemag.org/cgi/content/full/320/5874/340).

The team traced the virus’s steps by studying 13,000 flu samples from around the world. The World Health Organization Global Influenza Surveillance Network collected this data between 2002 and 2007, keeping track of when and where different strains of the virus popped up. They analyzed the shape differences between the proteins each virus uses to bind to human cells, along with the genetic makeup of each virus.

The team used this information to create an “antigenic map” which visually shows the relationships between all the different viruses. This map allowed them to determine the migration patterns of the virus around the world.

The work was funded by an NIH Director’s Pioneer Award (http://nihroadmap.nih.gov/pioneer) to Smith given for highly innovative research that has the potential for big impacts.

The roots of the project extend all the way back to when Smith was a graduate fellow at the Santa Fe Institute doing a PhD with Stephanie Forrest and Alan Perelson. He later began collaborating with Alan Lapedes, Robert Farber, and Terry Jones, all of whom were also affiliated with the Santa Fe Institute, to develop the methods and software to build antigenic maps.

“This work is highly multidisciplinary, with epidemiologists, computer scientists, computational biologists, mathematicians, virologists, immunologists, geneticists, veterinarians, and MDs,” Smith says. “It was made possible by collaborations with people from all of these disciplines. The Santa Fe Institute is one of the few places that could have gestated such work and I am immensely grateful for the 5 years I spent at SFI.”

Derek Smith | EurekAlert!
Further information:
http://www.zoo.cam.ac.uk
http://www.sciencemag.org/cgi/content/full/320/5874/310

More articles from Health and Medicine:

nachricht Foods of the future
15.08.2018 | Georg-August-Universität Göttingen

nachricht New antibody analysis accelerates rational vaccine design
09.08.2018 | Scripps Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>