Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineer to spearhead research into cell metabolism and medical injuries

13.05.2008
A University of Leicester engineer has won a share of grants totalling over £1m to target lung injury and cancer.

In an unusual move, Dr. Declan Bates, a senior lecturer in the Department of Engineering at the University of Leicester, is co-recipient of £1,068,000 in the form of just two research grants: one from the Engineering and Physical Sciences Research Council (EPSRC) and the other from the Biotechnology and Biological Sciences Research Council (BBSRC).

The grants are shared between academics at Leicester and Nottingham and Aberdeen.

The first will be used to examine how lung injury can be prevented in patients who are on ventilators; the second, to investigate a potential target for future cancer treatments.

“These may seem worlds apart -especially for an engineer, but they’re united by a common factor – feedback control theory – which of course is a science in its own right,” said Dr Bates.

He added: “It might seem odd that a life-support machine can cause injury, but this is actually not uncommon. The majority of critically ill patients in Intensive Therapy Units (ITU) spend some time with their lungs ventilated using a mechanical ventilator or “life-support machine”. However, mechanical ventilation exposes patients’ lungs to potentially damaging positive pressures, and as a result, ventilator-associated lung injury (VALI) is a common and significant occurrence. Prolonged stays in the ITU may be generated, pneumonia may be precipitated and lifelong lung scarring may result. The scale of the problem is such that 2.9% of people receiving mechanical ventilation suffer VALI each year, which represents several thousand individuals in the UK each year.

Dr Bates will be looking at these problems in terms of feedback control in order to find ways to optimally adjust the ventilators to allow them to do their job better while minimising injury. This is highly complicated, and previous attempts have had to rely on ‘idealised’ subjects. Dr Bates will perform population modelling, making his findings applicable to real patients.

With the second grant, Dr Bates will investigate how biochemical pathways are regulated in human cells, which could lead to improved anti-cancer drugs.

A class of molecules called polyamines are crucial to the health of the cells in your body. Cells normally regulate polyamine levels very tightly as changes in their concentrations can cause the cells to die, become cancerous, or give rise to other diseases.

Understanding how various biological control processes interact to keep everything on an even keel is a tall order, and one that can only be addressed with the new field of Systems Biology.

Dr Bates will draw on the expertise of biologists and control engineers to mathematically model the pathways involved. This will teach us how the control systems operate and how cells stay healthy, but should ultimately lead to therapies specific to the problems that arise when they go wrong.

Dr. Bates says:

“This interdisciplinary approach is required as a direct response to the complexity of the mechanisms being studied, which renders standard biological approaches inadequate.”

Ather Mirza | alfa
Further information:
http://www.le.ac.uk

More articles from Health and Medicine:

nachricht Study tracks inner workings of the brain with new biosensor
16.08.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Foods of the future
15.08.2018 | Georg-August-Universität Göttingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>