Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineer to spearhead research into cell metabolism and medical injuries

13.05.2008
A University of Leicester engineer has won a share of grants totalling over £1m to target lung injury and cancer.

In an unusual move, Dr. Declan Bates, a senior lecturer in the Department of Engineering at the University of Leicester, is co-recipient of £1,068,000 in the form of just two research grants: one from the Engineering and Physical Sciences Research Council (EPSRC) and the other from the Biotechnology and Biological Sciences Research Council (BBSRC).

The grants are shared between academics at Leicester and Nottingham and Aberdeen.

The first will be used to examine how lung injury can be prevented in patients who are on ventilators; the second, to investigate a potential target for future cancer treatments.

“These may seem worlds apart -especially for an engineer, but they’re united by a common factor – feedback control theory – which of course is a science in its own right,” said Dr Bates.

He added: “It might seem odd that a life-support machine can cause injury, but this is actually not uncommon. The majority of critically ill patients in Intensive Therapy Units (ITU) spend some time with their lungs ventilated using a mechanical ventilator or “life-support machine”. However, mechanical ventilation exposes patients’ lungs to potentially damaging positive pressures, and as a result, ventilator-associated lung injury (VALI) is a common and significant occurrence. Prolonged stays in the ITU may be generated, pneumonia may be precipitated and lifelong lung scarring may result. The scale of the problem is such that 2.9% of people receiving mechanical ventilation suffer VALI each year, which represents several thousand individuals in the UK each year.

Dr Bates will be looking at these problems in terms of feedback control in order to find ways to optimally adjust the ventilators to allow them to do their job better while minimising injury. This is highly complicated, and previous attempts have had to rely on ‘idealised’ subjects. Dr Bates will perform population modelling, making his findings applicable to real patients.

With the second grant, Dr Bates will investigate how biochemical pathways are regulated in human cells, which could lead to improved anti-cancer drugs.

A class of molecules called polyamines are crucial to the health of the cells in your body. Cells normally regulate polyamine levels very tightly as changes in their concentrations can cause the cells to die, become cancerous, or give rise to other diseases.

Understanding how various biological control processes interact to keep everything on an even keel is a tall order, and one that can only be addressed with the new field of Systems Biology.

Dr Bates will draw on the expertise of biologists and control engineers to mathematically model the pathways involved. This will teach us how the control systems operate and how cells stay healthy, but should ultimately lead to therapies specific to the problems that arise when they go wrong.

Dr. Bates says:

“This interdisciplinary approach is required as a direct response to the complexity of the mechanisms being studied, which renders standard biological approaches inadequate.”

Ather Mirza | alfa
Further information:
http://www.le.ac.uk

More articles from Health and Medicine:

nachricht Inhaling air pollution-like irritant alters defensive heart-lung reflex for hypertension
19.06.2019 | University of South Florida (USF Innovation)

nachricht Nitric oxide-scavenging hydrogel developed for rheumatoid arthritis treatment
06.06.2019 | Pohang University of Science & Technology (POSTECH)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer IDMT demonstrates its method for acoustic quality inspection at »Sensor+Test 2019« in Nürnberg

From June 25th to 27th 2019, the Fraunhofer Institute for Digital Media Technology IDMT in Ilmenau (Germany) will be presenting a new solution for acoustic quality inspection allowing contact-free, non-destructive testing of manufactured parts and components. The method which has reached Technology Readiness Level 6 already, is currently being successfully tested in practical use together with a number of industrial partners.

Reducing machine downtime, manufacturing defects, and excessive scrap

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

'Sneezing' plants contribute to disease proliferation

24.06.2019 | Agricultural and Forestry Science

Researchers find new mutation in the leptin gene

24.06.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>