Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hopkins researchers discover new link to schizophrenia

09.05.2008
Mouse model mimics clinical features

Neuroscientists at Johns Hopkins have discovered that mice lacking an enzyme that contributes to Alzheimer disease exhibit a number of schizophrenia-like behaviors. The finding raises the possibility that this enzyme may participate in the development of schizophrenia and related psychiatric disorders and therefore may provide a new target for developing therapies.

The BACE1 enzyme, for beta-site amyloid precursor protein cleaving enzyme, generates the amyloid proteins that lead to Alzheimer’s disease. The research team years ago suspected that removing BACE1 might prevent Alzheimer.

“We knew at the time that in addition to amyloid precursor protein, BACE1 interacts with other proteins but we didn’t know how those interactions might affect behavior,” says Alena Savonenko, M.D., Ph.D., an assistant professor in neuropathology at Hopkins.

Reporting in the Proceedings of the National Academies of Sciences, the research team describes how mice lacking the BACE1 enzyme show deficits in social recognition among other behaviors classically linked to schizophrenia.

A normal mouse, when introduced to another mouse, shows a lot of interest the first time they meet. If the mice are separated then reintroduced, their interest drops because they remember having met before, a phenomenon the researchers call habituation. If they then introduce a completely different mouse, interest piques again at the newbie.

The researchers introduced mice lacking BACE1 to another mouse. The first time they met, the BACE1 mouse showed interest, the second time meeting the same mouse the BACE1 mouse showed less interest and even less interest the third time. The researchers then introduced the BACE1 mouse to a totally different mouse of a different strain and the BACE1 mouse showed no interest at all. “These mice were totally disinterested, normal mice just don’t behave like this,” says Savonenko.

Additionally, the researchers found that these BACE1-lacking mice also displayed many other schizophrenia-like traits. Most importantly, according to Savonenko, some of the deficits improved after treatment with the antipsychotic drug clozapine.

Because schizophrenia is a disorder likely caused by many different factors, Savonenko explains that BACE1 might contribute to an increased risk of schizophrenia in certain patients and the BACE1 mice will be a useful animal model. “We never thought we would see one mouse that closely mimics so many of the clinical features of schizophrenia,” says Alena Savonenko, M.D., Ph.D., an assistant professor of neuropathology at Hopkins. “This could be a really useful model to study and understand the molecular contributions to the disease.”

Audrey Huang | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Health and Medicine:

nachricht Deep stimulation improves cognitive control by augmenting brain rhythms
04.04.2019 | Picower Institute at MIT

nachricht Black nanoparticles slow the growth of tumors
04.04.2019 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>