Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Not all fat created equal

08.05.2008
Joslin researchers find certain body fat reduces insulin resistance

It has long been known that type 2 diabetes is linked to obesity, particularly fat inside the belly. Now, researchers at the Joslin Diabetes Center have found that fat from other areas of the body can actually reduce insulin resistance and improve insulin sensitivity.

In a study published in the May issue of Cell Metabolism, a team lead by C. Ronald Kahn, M.D. found that subcutaneous fat -- fat found below the skin, usually in the hips and thighs -- is associated with reduced insulin levels and improved insulin sensitivity.

“This points to a new opportunity to find substances made by subcutaneous fat that may actually be good for glucose metabolism,’’ said Dr. Kahn, Head of the Joslin Research Section on Obesity and Hormone Action and the Mary K. Iacocca Professor of Medicine at Harvard Medical School. “If we can identify how subcutaneous fat does this, we will have a big clue as to where to look for these substances.”

Kahn noted that obesity in the abdominal or visceral area -- the classic “beer belly” or “apple” shape -- increases the risk of diabetes and mortality, and said it has been thought that obesity in subcutaneous areas -- the “pear” shape -- might decrease such risks.

“We started out to answer the basic question of whether fat inside the belly is bad for you because of where it is located, or is abdominal fat itself different from fat in other places,” said Kahn, an internationally recognized researcher in diabetes and metabolism.

To test if the differences were due to anatomic location or intrinsic properties of the fat deposits themselves, transplantations were performed in mice. The researchers found that when subcutaneous fat was transplanted into the abdominal area, there was a decrease in body weight, fat mass, glucose and insulin levels and an improvement in insulin sensitivity. By contrast, transplantation of abdominal fat into either the abdominal or subcutaneous area had no effect.

The paper concludes that subcutaneous fat is intrinsically different from visceral fat and may produce substances that can improve glucose metabolism.

“The surprising thing was that it wasn’t where the fat was located,” Kahn said. “It was the kind of fat that was the most important variable. Even more surprising, it wasn’t that abdominal fat was exerting negative effects, but that subcutaneous fat was producing a good effect. Animals with more subcutaneous fat didn’t gain as much weight as they aged, had better insulin sensitivity, lower insulin levels and were improved all around.”

Earlier studies in humans had shown that removal of subcutaneous fat by liposuction does not result in improvement of any aspect of metabolic syndrome, a collection of medical problems related to insulin resistance, but none had focused on possible good effects of this subcutaneous fat. However, one human study did show that obese individuals with high levels of both intra-abdominal and subcutaneous fat were more insulin sensitive than those with only high levels of intra-abdominal fat.

In addition, Kahn noted that a class of diabetes drugs called thiazoladines may cause patients to gain weight in the subcutaneous area, yet also improve insulin sensitivity.

Kahn said it is possible that subcutaneous fat may be producing certain hormones, known as adipokines, which produce beneficial effects on metabolism. These effects may offset the negative effects produced by abdominal fat.

The next step is to identify how subcutaneous fat produces these substances that improve metabolism and then find the substances themselves with the idea of creating a drug that can do the same thing.

“We’re already trying to identify through the use of proteomics what is coming out of the different fat cells,” Kahn said.

Kira Jastive | EurekAlert!
Further information:
http://www.joslin.harvard.edu

More articles from Health and Medicine:

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

nachricht Direct conversion of non-neuronal cells into nerve cells
03.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>