Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bleach-producing enzyme found to modulate blood vessel dilation during inflammation

28.06.2002


Findings important in developing new drugs to treat inflammatory vascular diseases



An enzyme that stimulates the production of chlorine bleach in cells to kill bacteria and other invading pathogens also turns off a signal that regulates blood vessel dilation during inflammation, researchers at the UC Davis School of Medicine and Medical Center have found.

The research -- conducted in collaboration with scientists at the University of Alabama at Birmingham, UCLA and the University of Iowa and reported in the June 28 issue of the journal Science -- is important because it identifies a previously unrecognized function for an abundant protein of the immune system and may reveal a new molecular target for the development of drugs to treat a variety of inflammatory vascular diseases.


The bleach-producing enzyme, known as myeloperoxidase, is a green-colored protein found in abundant supply in white blood cells, one of the sentries of the immune system. As white blood cells circulate in the bloodstream and accumulate at sites of infection or injury, they engulf bacteria and other foreign organisms. Just as bleach disinfects kitchens and bathrooms, this enzyme is released from storage sites within the white blood cell to locally produce hypochlorous acid, or chlorine bleach, as a bactericidal agent.

"Myeloperoxidase has been known to be an important component of the immune system," said Jason P. Eiserich, lead author and assistant professor of medicine and human physiology at the UC Davis School of Medicine and Medical Center. "It is present in very high concentrations in white blood cells and provides an important line of defense against invading micro-organisms. Since neutrophils are also known to contribute to impaired vascular function during acute inflammatory responses, we reasoned that myeloperoxidase may be a central player. Our studies show that myeloperoxidase does affect the vasculature, but by a pathway independent of its well-characterized capacity to produce chlorine bleach."

Under normal conditions, a chemical signal, nitric oxide, produced by endothelial cells lining the blood vessel wall, acts as an important vasodilator. The research team found that following the induction of acute inflammation in rodent models, myeloperoxidase is released from activated white blood cells, permeates vascular cells and is deposited within the blood vessel wall where it acts to consume nitric oxide, thereby blocking the signal that dilates blood vessels. Cellular and biochemical studies have corroborated the inhibitory role of myeloperoxidase.

"Identifying a protein that modulates nitric oxide-dependent blood vessel dilation has important implications for the potential treatment of inflammatory vascular diseases," said Eiserich. "Under acute inflammatory conditions, such as intense bacterial infection, this enzyme may provide a physiologic means for removing excessive nitric oxide levels and preventing severe low blood pressure conditions from developing. Drugs aimed at mimicking this enzymatic activity may be useful for treating systemic hypotension during septic shock. Alternatively, drugs aimed at blocking the activity of myeloperoxidase may be useful for treating chronic vascular diseases, such as atherosclerosis, which are commonly characterized by a deficit in the vasodilatory substance nitric oxide and the accumulation of myeloperoxidase in the blood vessel wall."

The research findings also may help guide future studies aimed at identifying whether individuals without the myeloperoxidase enzyme due to hereditary deficiency display abnormal vascular responses during inflammation.


Other scientists contributing to this research include Stephan Baldus, Wenxin Ma, Chunxiang Zhang, Albert Tousson, Laura Castro, C. Roger White and Bruce A. Freeman from the University of Alabama; Marie-Luise Brennan and Aldons J. Lusis from UCLA; and William M. Nauseef from the University of Iowa. The research was supported by grants from the National Institutes of Health, the American Heart Association and the Veterans Affairs Administration.

Carole Gan | EurekAlert!
Further information:
http://news.ucdmc.ucdavis.edu

More articles from Health and Medicine:

nachricht Diabetes mellitus: A risk factor for early colorectal cancer
27.05.2020 | Nationales Centrum für Tumorerkrankungen (NCT) Heidelberg

nachricht Ultra-thin fibres designed to protect nerves after brain surgery
27.05.2020 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

New 5G switch provides 50 times more energy efficiency than currently exists

27.05.2020 | Information Technology

Return of the Blob: Surprise link found to edge turbulence in fusion plasma

27.05.2020 | Physics and Astronomy

Upwards with the “bubble shuttle”: How sea floor microbes get involved with methane reduction in the water column

27.05.2020 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>