Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bone marrow transplants may be improved due to the uncovering of a key mechanism

28.06.2002


Weizmann Institute scientists have uncovered a key mechanism that enables stem cells to exit the bone marrow into the blood circulation of healthy donors, as well as patients suffering from leukemia, other malignancies and blood disorders. Published in the current July issue of Nature Immunology, the findings may lead to more efficient clinical stem cell transplantations.



Bone marrow transplantation is a last-resort treatment that saves the lives of many patients with cancer and inherited blood disorders. In a transplantation, the patient’s malignant or defective stem cells in the marrow are destroyed, and healthy stem cells – either from a healthy donor or from the patient himself before or during treatment with chemotherapy – must be "encouraged" to come out of the marrow into the bloodstream (in other words, they must be "mobilized"). Thus, scientists have been trying to find out what triggers stem cell mobilization.

Dr. Tsvee Lapidot of Weizmann’s Immunology Department, and his PhD student, Isabelle Petit, found that the degradation of SDF-1, a key protein in the bone marrow, is crucial for stem cell mobilization. SDF-1 had previously been found by this and other research teams worldwide to anchor stem cells inside the marrow by activating adhesion molecules (molecules that serve as "glue"). Uncovered today is the "anchors aweigh" mechanism that frees stem cells into the blood.


The scientists investigated stimulation with the growth factor G-CSF, currently the most common clinical method used to induce stem cell mobilization. (In addition to its role in bone marrow transplantation, it is also used to treat children suffering from neutropenia, i.e. lack of white blood cells in the circulation). Before this study, G-CSF’s mode of action was largely unknown. Lapidot and Petit found that it reduces the number of SDF-1 proteins in the marrow by causing the production of degrading enzymes, in particular elastase. The result: stem cells attached to the marrow lose their "anchors" and flow into the bloodstream. Stem cells produced during SDF-1 degradation are not able to "cast anchor" to begin with and will also exit the marrow. The scientists found that stem cell mobilization peaked when SDF-1 levels in the bone marrow were at their lowest.

In addition, the team observed another of G-CSF’s effects: it causes an increase in the number of receptors of a certain type (called CXCR4) on stem cells and maturing white blood cells in the bone marrow. CXCR4 is the receptor that binds specifically with SDF-1. Surprisingly, they found that interactions between SDF-1 and CXCR4 are necessary for mobilization to take place. Inhibition of SDF-1 and CXCR4 interactions with neutralizing antibodies blocked stem cell mobilization.

The findings may lead to improved collection of stem cells for clinical transplantations. They also shed new light on neutropenia, resulting from a genetic defect in the elastase enzyme, which the group found plays a central role in degrading SDF-1.

An experimental system for human stem cells developed by Dr. Lapidot and his colleagues in 1999 enables the study of the mechanism by which human blood forming stem cells migrate from the blood into the bone marrow by transplanting human stem cells into immunodeficient mice, which lack the ability to reject foreign cells. In the current study this model was used to reveal the mechanism of human stem cell mobilization in these mice. Part of the study was also conducted with samples obtained from healthy donors treated with G-CSF for clinical stem cell transplantation.


###
The Weizmann Institute of Science in Rehovot, Israel is one of the world’s foremost centers of scientific research and graduate study. Its 2,500 scientists, students, technicians and engineers pursue basic research in the quest for knowledge and to enhance the quality of human life. New ways of fighting disease and hunger, protecting the environment, and harnessing alternative sources of energy are high priorities at Weizmann.


Jeffrey J. Sussman | EurekAlert!

More articles from Health and Medicine:

nachricht Scientists find new approach that shows promise for treating cystic fibrosis
14.03.2019 | NIH/National Heart, Lung and Blood Institute

nachricht Lab grown ‘brains’ successfully model disease
13.03.2019 | Max-Planck-Institut für Psychiatrie

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

Im Focus: Sensing shakes

A new way to sense earthquakes could help improve early warning systems

Every year earthquakes worldwide claim hundreds or even thousands of lives. Forewarning allows people to head for safety and a matter of seconds could spell...

Im Focus: A thermo-sensor for magnetic bits

New concept for energy-efficient data processing technology

Scientists of the Department of Physics at the University of Hamburg, Germany, detected the magnetic states of atoms on a surface using only heat. The...

Im Focus: The moiré patterns of three layers change the electronic properties of graphene

Combining an atomically thin graphene and a boron nitride layer at a slightly rotated angle changes their electrical properties. Physicists at the University of Basel have now shown for the first time the combination with a third layer can result in new material properties also in a three-layer sandwich of carbon and boron nitride. This significantly increases the number of potential synthetic materials, report the researchers in the scientific journal Nano Letters.

Last year, researchers in the US caused a big stir when they showed that rotating two stacked graphene layers by a “magical” angle of 1.1 degrees turns...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Researchers measure near-perfect performance in low-cost semiconductors

18.03.2019 | Power and Electrical Engineering

Nanocrystal 'factory' could revolutionize quantum dot manufacturing

18.03.2019 | Materials Sciences

Long-distance quantum information exchange -- success at the nanoscale

18.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>