Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deadly dose: Rensselaer heparin expert helps uncover source of lethal contamination

29.04.2008
The mysterious death of patients around the world following a routine dosage of the common blood thinner, heparin, sent researchers on a frantic search to uncover what could make the standard drug so toxic. A researcher at Rensselaer Polytechnic Institute was among a small group of scientists with the expertise and the high-tech equipment necessary to determine the source of the contamination.

Robert J. Linhardt, the Ann and John H. Broadbent Jr. '59 Senior Constellation Professor of Biocatalysis and Metabolic Engineering at Rensselaer, is part of an international team that recently announced it had uncovered the source of the deadly contamination. On April 23, the team led by researchers at the Massachusetts Institute of Technology (MIT), described the source in the journal Nature Biotechnology -- a complex carbohydrate named oversulfated chondroitin sulfate, which has a structure so similar to heparin it was nearly undetectable to less advanced technology.

"Days after the deaths were first linked to heparin, we had the drugs in our hands from the FDA and our nuclear magnetic resonator (NMR) was set into motion to break down the structure of the drug and determine what could possibly be the source of the contamination," Linhardt said. "Now that we know the most likely source of the contamination, we are developing much stronger monitoring systems to ensure that this type of contamination is detected before it reaches patients."

Although extremely close in chemical structure to heparin, the contaminant caused severe allergic reaction in many patients who were receiving routine treatment for kidney dialysis, heart surgery, and other common medical issues. The researchers' extremely detailed structural analysis of the drug, using technology such as the NMR, was able to detect the minute differences between the contaminated drug and a normal dosage of heparin. And while Linhardt and others are developing more sophisticated detection systems, Linhardt also is helping lead the race for a safer, man-made alternative to the traditional biologic heparin. Biological heparin is currently developed by purifying the scrapings of pig and cow intestines.

"This contamination is unfortunately a sign that the way we currently manufacture heparin is simply unsafe," he said. "Because we rely on animals, we open ourselves up for spreading prions and diseases like mad cow disease through these animals. And because most of the raw material is imported, we often can't be sure of exactly what we are getting."

Linhardt is helping lead the global race to develop a synthetic alternative to heparin that could help eliminate the potential for contamination and adverse affects of biologic heparin. His lab developed the first fully synthetic heparin in amounts large enough for human dosage in 2005, and he continues to work to get the product further tested and commercialized.

"A synthetic heparin is built using sugars and enzymes found in the human body," Linhardt said of his recipe for synthetic heparin. "So instead of taking pig intestines and trying to purify it over and over again to reduce it down to just heparin, we are building heparin from scratch with no foreign material present. This method ensures that we know exactly what is in the drug and have complete control over its ingredients."

The research published in Nature Biotechnology was led by Ram Sasisekharan at MIT and involved a multidisciplinary and global team of researchers, including scientists and engineers from the FDA, Momenta Pharmaceuticals of Cambridge, Mass., and the Istituto di Ricerche Chimiche e Biochimiche of Milan, Italy.

Linhardt and his team of researchers at Rensselaer, which includes postdoctoral, graduate, and undergraduate students, used the sophisticated NMR and other technologies in the Rensselaer Center for Biotechnology and Interdisciplinary Studies (CBIS) to help uncover the source of the contamination.

About Rensselaer

Rensselaer Polytechnic Institute, founded in 1824, is the nation's oldest technological university. The university offers bachelor's, master's, and doctoral degrees in engineering, the sciences, information technology, architecture, management, and the humanities and social sciences. Institute programs serve undergraduates, graduate students, and working professionals around the world. Rensselaer faculty are known for pre-eminence in research conducted in a wide range of fields, with particular emphasis in biotechnology, nanotechnology, information technology, and the media arts and technology. The Institute is well known for its success in the transfer of technology from the laboratory to the marketplace so that new discoveries and inventions benefit human life, protect the environment, and strengthen economic development.

About the Rensselaer Center for Biotechnology and Interdisciplinary Studies

Ranked among the world's most advanced research facilities, the Rensselaer Center for Biotechnology and Interdisciplinary Studies provides a state-of-the-art platform for collaborative research. At the Center, faculty and students in diverse academic and research disciplines are crossing the divide between the life sciences and engineering to encourage discovery and innovation. Four biotechnology research constellations - biocatalysis and metabolic engineering, functional tissue engineering and regenerative medicine, biocomputation and bioinformatics, and integrative systems biology - engage a multidisciplinary mix of faculty and students to help create new technologies that will save and improve the lives of people around the world.

Gabrielle DeMarco | EurekAlert!
Further information:
http://www.rpi.edu

More articles from Health and Medicine:

nachricht UC San Diego researchers develop sensors to detect and measure cancer's ability to spread
06.12.2018 | University of California - San Diego

nachricht New cancer immunotherapy approach turns immune cells into tiny anti-tumor drug factories
05.12.2018 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

Inaugural "Virtual World Tour" scheduled for december

28.11.2018 | Event News

 
Latest News

A new molecular player involved in T cell activation

07.12.2018 | Life Sciences

High-temperature electronics? That's hot

07.12.2018 | Materials Sciences

Supercomputers without waste heat

07.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>