Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists identify novel way to prevent cardiac fibrosis

24.04.2008
In a study that points to a new strategy for preventing or possibly reversing fibrosis – the scarring that can lead to organ and tissue damage – researchers at the University of California, San Diego School of Medicine have determined that a molecule called Epac (Exchange protein activated by cAMP1), plays a key role in integrating the body’s pro- and anti-fibrotic response.

The research will be published in the online edition of the Proceedings of the National Academy of Science (PNAS) the week of April 21.

Inflammation is the body’s response to injury in tissues, prompting healing that leads to scars, whether on the skin, or in organs such as the heart, liver or lungs. Such scarring has beneficial properties, but there’s also the risk of excessive scarring, or tissue fibrosis, that can lead to organ damage and loss of function.

The UC San Diego researchers looked at cardiac fibrosis, which can occur in patients who have suffered an infection of the heart muscle or a heart attack. Such fibrosis causes the heart to stiffen so that it cannot adequately fill with blood and then empty itself, a condition known as diastolic dysfunction.

“An old heart is a stiff heart and some injured hearts are stiff as well,” said Paul A. Insel, M.D., UCSD professor of pharmacology and medicine, and principal investigator of the study. “Much of the decrease in cardiovascular function that occurs with aging or, in some patients after a heart attack, can be explained by fibrosis. We wondered: What is responsible for excessive fibrosis" Is there a way to decrease or possibly reverse it"”

It was previously known that a messenger molecule inside of cells, called cAMP, can block fibrosis in the heart. Insel and colleagues explored the mechanism leading to the anti-fibrotic effect, and discovered that the Epac molecule mediates cAMP actions that are involved in cardiac fibrosis. Epac also helps regulate other proteins that contribute to cell death, division, migration and motility.

“We found that Epac activation exerts a very important impact on the function of fibroblasts, the cells responsible for making and secreting collagen and thus for producing tissue fibrosis,” said Insel. “Most exciting was our discovery that multiple agents that promote fibrosis decrease the expression and activation of Epac in fibroblasts from several different tissues – not only in the heart but also in lung, liver and skin.”

The researchers found decreased Epac expression in regions near the site of heart attacks in rats and mice. In addition, they found that by increasing Epac expression, they were able to block the ability of agents to promote fibrosis.

Because increases in cAMP levels can decrease the function of fibroblasts after cell injury, stimulation of the cAMP signaling pathway is a potential way to blunt fibrosis. Increases in Epac expression may provide a novel way to do this, especially in cardiac fibroblasts, Insel added. To test this possibility, the scientists treated fibroblast cells in culture in ways that altered Epac expression, increasing Epac expression using an adenoviral construct.

“Using this strategy to overexpress Epac, we produced an anti-fibrotic effect, thereby inhibiting the synthesis of collagen” said Insel. “Other experiments showed that decreasing Epac expression favored fibrosis; in other words, were pro-fibrotic. Overall, the results show the central role of Epac in determining pro-fibrotic and anti-fibrotic response.”

Debra Kain | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Health and Medicine:

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

nachricht Direct conversion of non-neuronal cells into nerve cells
03.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>