Chemotherapy causes delayed severe neural damage

Now, research published in the open access Journal of Biology demonstrates that treatment with a single chemotherapeutic agent, 5-fluorouracil (5-FU), by itself is sufficient to cause a syndrome of delayed degeneration in the central nervous system (CNS). 5-FU is a widely used chemotherapeutic agent that is employed, alone or in combination with other agents, in the treatment of cancers of the colon, rectum, breast, stomach, pancreas, ovaries and bladder

Little is known about the side-effects of chemotherapy on the CNS, despite their obvious clinical importance. Until now researchers have not fully understood the underlying biology, including whether these effects require: exposure to multiple chemotherapeutic agents; chemotherapeutic agents plus the body’s own response to cancer; blood-brain barrier damage; or inflammation. Clinicians have also lacked animal models to study this important problem.

Professor Mark Noble and colleagues of the University of Rochester Stem Cell and Regenerative Medicine Institute and the Harvard Medical School, Boston discovered that short-term systemic administration of 5-FU to mice caused both acute CNS damage and a syndrome of progressively worsening delayed damage. This damage was not self-repairing, and instead became worse over time. In addition, Noble and colleagues also demonstrated that treatment with chemotherapy also had delayed effects on the speed with which information is transferred from the ear to the brain.

Myelin sheaths are necessary for normal neuronal function. One key finding of the study was that clinically relevant concentrations of 5-FU were toxic not only for dividing cells of the CNS but also for the cells that produce the insulating myelin sheaths (non-dividing oligodendrocytes). The delayed damage the researchers measured was to the myelinated tracts of the CNS and associated with extensive myelin pathology. The findings regarding the speed of ear-to-brain information transfer may offer a non-invasive means of analyzing myelin damage associated with cancer treatment.

“Multiple clinical reports have identified neurotoxicity as a complication of treatment regimens in which chemotherapeutic agents such as 5-fluorouracil are components,” says Noble. “As treatments with chemotherapeutic agents will clearly remain the standard of care for cancer patients for many years to come, the need to better understand such damage is great.”

Professor Noble continues “These studies extend the field of stem cell medicine beyond the use of cell transplantation for tissue repair. It is our knowledge of stem cell biology that allows us to begin to understand some of the causes of this syndrome, as well as providing the means of preventing or repairing this damage.”

This research provides the first demonstration that delayed CNS damage can be induced by a single chemotherapeutic agent and also generates the first animal model of such damage. These studies further demonstrate that this syndrome differs from that caused by irradiation and thus may represent a new class of delayed CNS degenerative damage.

Media Contact

Charlotte Webber alfa

More Information:

http://www.biomedcentral.com

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

Combatting disruptive ‘noise’ in quantum communication

In a significant milestone for quantum communication technology, an experiment has demonstrated how networks can be leveraged to combat disruptive ‘noise’ in quantum communications. The international effort led by researchers…

Stretchable quantum dot display

Intrinsically stretchable quantum dot-based light-emitting diodes achieved record-breaking performance. A team of South Korean scientists led by Professor KIM Dae-Hyeong of the Center for Nanoparticle Research within the Institute for…

Internet can achieve quantum speed with light saved as sound

Researchers at the University of Copenhagen’s Niels Bohr Institute have developed a new way to create quantum memory: A small drum can store data sent with light in its sonic…

Partners & Sponsors