Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flu tracked to viral reservoir in tropics

18.04.2008
Each winter, strains of influenza A virus infect North Americans, causing an average of 36,000 deaths. Now, researchers say the virus comes from a viral reservoir somewhere in the tropics, settling a key debate on the source of each season's infection.

"We now know where the influenza A virus comes from every year," said Edward Holmes, professor of biology at Penn State. "And because we now know how the virus evolves, we have a much better chance of controlling it."

Currently, there are many strains of the influenza virus that appear only in birds, which are natural viral reservoirs. So far three of these viral strains -- H1N1, H2N2 and H3N2 – have caused epidemics in humans as influenza A.

Of the three, H3N2 is the dominant strain, responsible for most influenza infections each winter, with lower levels of H1N1. However, little is known about how these two strains spread on a geographical scale, and how whole genome of influenza A virus evolves.

Holmes and his colleagues analyzed complete genomes of 1,032 strains of H1N1 and H3N2 viruses sampled over a 12-year period from New York state in the northern hemisphere and New Zealand in the southern hemisphere.

The researchers noticed that over time, both strains follow a distinctive pattern. In seasons where the H3N2 strain is dominant, H1N1 is not and vice versa.

"We found that the two strains peak at different times, and seem to be directly competing with each other" said Holmes, whose findings appear today online in Nature. The results also indicate that compared to the H3N2 strain, the H1N1 strain exhibits far less genetic diversity, although it is not clear why.

Holmes says his results also show that the influenza A virus is frequently exchanging genes by reassortment – when multiple human influenza viruses infect a single person and shuffle their genes – which sometimes allows the virus to acquire a new haemagglutinin, a protein that facilitates the entry of viral particles into the host cells.

These new haemagglutinins sometimes cause vaccines to fail, explained Holmes, whose work is funded by the National Institutes of Health.

"The critical thing is unless you understand the way the genome evolves, you will not understand why vaccines work during some years and fail during others," he added. "We can now show that vaccines failed in some years because new haemagglutinins appeared."

The Penn State researcher says his analysis not only indicates how the influenza virus is evolving, but also where new strains are being generated.

Each year new strains appear in the northern hemisphere, infect people and then burn out. However, patterns of genetic diversity within the viruses suggest the strains are coming from a global source population. The researchers believe that there must be some reservoir somewhere that every year generates new strains that are injected each season into the north and the south, and then burn themselves out.

"We know the strains are dying out every year in the northern and southern hemispheres. So they're surviving somewhere else, and we think it is a reservoir in the tropics," Holmes said. "It tells us that to really understand how the influenza virus evolves on a seasonal basis, and to make the best vaccine, we need to focus our surveillance on the source population in the tropics, especially in places such as Southeast Asia."

Amitabh Avasthi | EurekAlert!
Further information:
http://www.psu.edu

More articles from Health and Medicine:

nachricht Study shows novel protein plays role in bacterial vaginosis
13.12.2019 | University of Arizona Health Sciences

nachricht Illinois team develops first of a kind in-vitro 3D neural tissue model
12.12.2019 | University of Illinois College of Engineering

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Virus multiplication in 3D

Vaccinia viruses serve as a vaccine against human smallpox and as the basis of new cancer therapies. Two studies now provide fascinating insights into their unusual propagation strategy at the atomic level.

For viruses to multiply, they usually need the support of the cells they infect. In many cases, only in their host’s nucleus can they find the machines,...

Im Focus: Cheers! Maxwell's electromagnetism extended to smaller scales

More than one hundred and fifty years have passed since the publication of James Clerk Maxwell's "A Dynamical Theory of the Electromagnetic Field" (1865). What would our lives be without this publication?

It is difficult to imagine, as this treatise revolutionized our fundamental understanding of electric fields, magnetic fields, and light. The twenty original...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Supporting structures of wind turbines contribute to wind farm blockage effect

13.12.2019 | Physics and Astronomy

Chinese team makes nanoscopy breakthrough

13.12.2019 | Physics and Astronomy

Tiny quantum sensors watch materials transform under pressure

13.12.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>