Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breast cancers : What if their invasive power were "latent" from the beginning of their development?

14.04.2008
Why are some cancers more aggressive than others? This was the question explored by a number of doctors and Inserm research scientists at the Institut Curie when they studied the biological profile of a form of breast cancer.

The results were astounding: tumour aggressiveness seems to be determined from the very first tumour cells and the biological diversity observed in invasive cancers already exists in localised forms.

These results could make it possible to define subpopulations of localised cancers and adapt the treatment according to the associated risks.

But with this work published in the Clinical Cancer Research issue of 1st April, the question remains of the origin of tumour cell aggressiveness: if it does not arise from biological modifications formerly acquired by tumour cells, how is the invasive capacity triggered off?

There is not one breast cancer: there are many sorts, and treatment differs according to the state of evolution, location and cells from which it is propagated (see inset on "breast cancers").

15% to 20% of them are in situ canicular breast tumours: this localised cancer develops to the detriment of the epithelial cells of the galactophoric ducts, which convey the milk produced by the mammary gland. If it is not diagnosed in time, an in situ canicular breast carcinoma can invade the neighbouring tissues. Invasive canicular cancers represent 80% of all cases of invasive breast cancer.

Dr Anne Vincent-Salomon(1), a doctor/researcher at the Institut Curie working under Dr Olivier Delattre(2), Director of the "Genetics and biology of cancers" Inserm 830 Unit at the Institut Curie, has studied the biological profile of in situ canicular breast cancers. This work would not have been possible without the collaboration of the surgeons, anatomopathologists and radiotherapists of the Institut Curie Breast Cancer Unit headed by Dr Brigitte Sigal, nor without the help of biologists and biocomputer scientists from the Inserm/Institut Curie "Genetics and biology of cancers " Unit.

Drs Anne Vincent-Salomon and Olivier Delattre analysed the phenotype and genetic profile of 57 in situ canicular breast tumours, together with the gene expression – the transcriptome(3) – of 26 of these tumours. Now, these profiles at the localised stage are very similar to those observed with invasive in situ canicular breast cancers. Diversity, and in particular the invasive power of breast cancers, thus exists in the early stages.

Cancers characterised, for example, by a mutation of the TP53 gene or overexpression of HER2 receptors possess this alteration right from the first phases of their development. The classification – basal-like, luminal or ERBB2 (see inset on "breast cancers") – adopted to define invasive breast cancers and their treatment more clearly could thus be used with localised forms as well.

Another conclusion drawn from the work: since they are present from the very beginning of development, TP53 mutations or expression modifications in HER2 receptors are not those that trigger off the invasion of the cancers. Likewise for the alterations in the development genes that appear right at the start of the tumour's evolution. So how does a tumour acquire an aggressive character? If it does not arise from successive genetic modifications within tumour cells, could it be that a tumour's evolution depends on the genetic context in which it takes place?

Are there genetic specificities peculiar to the patient that influence the evolution of tumours? Maybe not everything is contained in the tumour cells alone…

(1) Dr Anne Vincent-Salomon is an anatomopathologist in the Tumour Biology Department at the Institut Curie. She undertook this work during her thesis carried out notably by means of an Inserm INTERFACE contract enabling her to devote her time to research while another doctor replaced her.

(2) Dr Olivier Delattre is the Inserm Research Director at the Institut Curie.

(3) The transcriptome is all the ARN messengers, the molecules serving as matrix for the synthesis of proteins from the expression of part of the genome of a cell tissue or type of cell.

celine giustranti | alfa
Further information:
http://clincancerres.aacrjournals.org/

More articles from Health and Medicine:

nachricht Diverse amyloid structures and dynamics revealed by high-speed atomic force microscopy
04.08.2020 | Kanazawa University

nachricht New approach for targeted cancer immunotherapy
30.07.2020 | Universität Basel

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

Im Focus: NYUAD astrophysicist investigates the possibility of life below the surface of Mars

  • A rover expected to explore below the surface of Mars in 2022 has the potential to provide more insights
  • The findings published in Scientific Reports, Springer Nature suggests the presence of traces of water on Mars, raising the question of the possibility of a life-supporting environment

Although no life has been detected on the Martian surface, a new study from astrophysicist and research scientist at the Center for Space Science at NYU Abu...

Im Focus: Manipulating non-magnetic atoms in a chromium halide enables tuning of magnetic properties

New approach creates synthetic layered magnets with unprecedented level of control over their magnetic properties

The magnetic properties of a chromium halide can be tuned by manipulating the non-magnetic atoms in the material, a team, led by Boston College researchers,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

First radio detection of an extrasolar planetary system around a main-sequence star

04.08.2020 | Physics and Astronomy

The art of making tiny holes

04.08.2020 | Physics and Astronomy

Early Mars was covered in ice sheets, not flowing rivers

04.08.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>