Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Manipulating the immune system like a parasite

11.04.2008
One day it may be possible to mimic the tactics used by parasites to trick the body into accepting transplanted tissues or organs.

That is the hope of Dr Shane Grey from the Garvan Institute for Medical Research and Professor John Dalton from the Institute for the Biotechnology of Infectious Diseases at the University of Technology (UTS). The pair has been awarded a $400,000 grant through the Australian Islet Transplantation Program, administered jointly by the Juvenile Diabetes Research Foundation (JDRF) and the Commonwealth Department of Health and Ageing.

The grant will be divided equally between Garvan and UTS over a period of two years, and will combine Professor Dalton’s expertise in parasitology and biochemistry with Dr Grey’s expertise as a transplant immunologist.

When parasites invade humans, they secrete compounds that appear to change the way the immune system sees them. In other words, they alter the immune response.

“Over time our immune system has evolved different ways to deal with different organisms and challenges,” explained Dr Grey. “What the parasite does is deviate the immune system from an effective response to one that’s more suited to attacking other organisms or pathogens. It’s quite cunning.”

“By effectively disarming its host, the parasite is doing the equivalent of replacing the weaponry of a modern army with bows and arrows.”

The Australian Islet Transplantation Program funds much innovative transplant therapy work in the hope of one day finding a way for recipients to tolerate islet (insulin producing cells in the pancreas) transplants without having to take highly toxic immunosuppressive drugs for the rest of their lives. Many people believe that effective islet transplantation offers the greatest hope for curing Type 1 diabetes, or insulin dependent diabetes.

Before applying for the grant, the Garvan and UTS teams undertook a short pilot study to test their approach. The initial test results left Dr Grey feeling very optimistic about the proposed collaboration.

“The UTS team sent us some biochemically pure compounds which we delivered over three weeks to mice that had received an islet transplant. Stacey Walters, a member of my research team, found that the optimal combination of compounds gave permanent graft survival. In that type of model, the outcome we achieved was extraordinary.”

“Our first step now that we have received funding will be to repeat our initial result on a larger cohort of animals. Then our challenge will be to work out exactly what the compounds do to a recipient’s immune system. Obviously we’d like to tease out the good bioactive components and remove any that could be harmful.”

“Ideally, we’d like to bring about an alteration of the immune system to allow the retention of a graft yet perform other functions as normal. If we achieve that, we will be very happy.”

Alison Heather | EurekAlert!
Further information:
http://www.garvan.org.au

More articles from Health and Medicine:

nachricht Inselspital: Fewer CT scans needed after cerebral bleeding
20.03.2019 | Universitätsspital Bern

nachricht Building blocks for new medications: the University of Graz is seeking a technology partner
19.03.2019 | Karl-Franzens-Universität Graz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>