Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem cell breakthrough offers diabetes hope

07.04.2008
Scientists have discovered a new technique for turning embryonic stem cells into insulin-producing pancreatic tissue in what could prove a significant breakthrough in the quest to find new treatments for diabetes.

The University of Manchester team, working with colleagues at the University of Sheffield, were able to genetically manipulate the stem cells so that they produced an important protein known as a ‘transcription factor’.

Stem cells have the ability to become any type of cell, so scientists believe they may hold the key to treating a number of diseases including Alzheimer’s, Parkinson’s and diabetes.

However, a major stumbling block to developing new treatments has been the difficulty scientists have faced ensuring the stem cells turn into the type of cell required for any particular condition – in the case of diabetes, pancreatic cells.

“Unprompted, the majority of stem cells turn into simple nerve cells called neurons,” explained Dr Karen Cosgrove, who led the team in Manchester’s Faculty of Life Sciences.

“Less than one per cent of embryonic stem cells would normally become insulin-producing pancreatic cells, so the challenge has been to find a way of producing much greater quantities of these cells.”

The pancreas contains different types of specialised cells – exocrine cells, which produce enzymes to aid digestion, and endocrine cells, including beta cells, which produce the hormone insulin to regulate the blood glucose levels. Diabetes results when there is not enough insulin to meet the body’s demands.

There are two forms of the disease: type-1 diabetes is due to not enough insulin being produced by the pancreas, while type-2 or adult-onset diabetes occurs when the body fails to respond properly to the insulin that is produced.

The team found that the transcription factor PAX4 encouraged high numbers of embryonic stem cells – about 20% – to become pancreatic beta cells with the potential to produce insulin when transplanted into the body.

Furthermore, the scientists for the first time were able to separate the new beta cells from other types of cell produced using a technique called ‘fluorescent-activated cell sorting’ which uses a special dye to colour the pancreatic cells green.

“Research in the United States has shown that transplanting a mixture of differentiated cells and stem cells can cause cancer, so the ability to isolate the pancreatic cells in the lab is a major boost in our bid to develop a successful therapy,” said Dr Cosgrove.

“Scientists have had some success increasing the number of pancreatic cells produced by altering the environment in which the stem cells develop, so the next stage of our research will be to combine both methods to see what proportions we can achieve.”

Scientists believe that transplanting functional beta cells into patients, most likely into their liver where there is a strong blood supply, offers the best hope for finding a cure for type-1 diabetes. It could also offer hope to those with type-2 diabetes whose condition requires insulin injections.

But the more immediate benefit of the team’s research is likely to be in providing researchers with a ready-made supply of human pancreatic cells on which to study the disease process of diabetes and test new drugs.

Aeron Haworth | EurekAlert!
Further information:
http://www.manchester.ac.uk

More articles from Health and Medicine:

nachricht Using fragment-based approaches to discover new antibiotics
21.06.2018 | SLAS (Society for Laboratory Automation and Screening)

nachricht Scientists learn more about how gene linked to autism affects brain
19.06.2018 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superconducting vortices quantize ordinary metal

Russian researchers together with their French colleagues discovered that a genuine feature of superconductors -- quantum Abrikosov vortices of supercurrent -- can also exist in an ordinary nonsuperconducting metal put into contact with a superconductor. The observation of these vortices provides direct evidence of induced quantum coherence. The pioneering experimental observation was supported by a first-ever numerical model that describes the induced vortices in finer detail.

These fundamental results, published in the journal Nature Communications, enable a better understanding and description of the processes occurring at the...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Rapid water formation in diffuse interstellar clouds

25.06.2018 | Physics and Astronomy

Using tree-fall patterns to calculate tornado wind speed

25.06.2018 | Earth Sciences

'Stealth' material hides hot objects from infrared eyes

25.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>