Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Better and faster: Distinguishing non-TB pulmonary disease from TB

03.04.2008
A diagnostic kit shows new promise for distinguishing between tuberculosis (TB) and its infections from disease caused by related mycobacteria family, which mimic TB and other lung disease in symptoms but require distinctly different clinical treatments.

The bacterium that causes TB, mycobacteria tuberculosis, comes from a larger family of mycobacteria, certain strains of which can cause lung disease. The most common pathogenic nontubercular mycobacteria are known together as Mycobacterium avium complex, or MAC. Distinguishing MAC-related pulmonary disease (MAC-PD) from TB is difficult, and can take eight weeks or more. Complicating matters, MAC bacteria are ubiquitous in the environment, and a positive culture may mean nothing more than specimen contamination.

Now, researchers have shown in a multi-center study that differentiating MAC-PD from TB can be accomplished in just a few hours using an assay that can identify antibodies specific to MAC.

The research was published in the first issue for April of the American Journal of Respiratory and Critical Care Medicine, published by the American Thoracic Society.

MAC is responsible for a growing proportion of pulmonary disease, but how much is unclear. “There are more cases being reported,” said Dr. Alvin Teirstein, professor of medicine at Mount Sinai School of Medicine. “We are not sure where it was hiding 25 years ago, but there appears to be a growing epidemic over the last 20 years.”

Up to now, distinguishing between MAC and TB largely relied on a suite of clinical signs and obtaining repeatedly positive sputum cultures—a process that was both unwieldy and often unreliable. “About 20 percent of the time the physician might make the wrong determination,” said Dr. Teirstein.

Furthermore, even though initial diagnosis is uncertain, patients whose sputum is positive for acid-fast bacilli are often immediately isolated and sometimes started on a regimen of anti-TB drugs. Isolating non-TB patients and beginning inappropriate treatment regimens not only drains resources that could be used to treat infectious TB, it is a burden and risk to the patient as well. In contrast to TB, MAC is not contagious and sometimes requires no treatment.

“Diagnosis of pulmonary disease due to MAC is complicated and time-consuming,” wrote Seigo Kitada, lead researcher on the study. “In the context of infection control it is particularly important to distinguish between MAC-PD and pulmonary TB.”

To test the efficacy of the immunoassay kit, the researchers acquired specimens from six centers between June 2003 and December 2005. The samples came from 70 patients with MAC-PD; 18 with MAC contamination, 36 with pulmonary TB, 45 with other lung disease and 76 from healthy patients.

They found that found that serum antibody levels to the MAC-specific antigen were higher in patients with MAC pulmonary disease as compared to those with other respiratory diseases, including tuberculosis. The sensitivity and specificity of the serologic test were 84.3% and 100%, respectively. Equally important, the test, took only hours as opposed to the four to eight weeks it takes to determine conventional culture results.

While Dr. Tierstein points out that to be validated, the kit must perform well with different populations and in different locations, as MAC strains can vary from place to place, this is the first multi-center demonstration of the efficacy of such a kit, raising the hope that it may solve the problem of distinguishing MAC-PD from TB and represents a critical step in increasing the accuracy and efficiency in treating patients with MAC-PD and TB.

Keely Savoie | EurekAlert!
Further information:
http://www.thoracic.org

More articles from Health and Medicine:

nachricht Discovery shows promise for treating Huntington's Disease
05.08.2020 | Ecole Polytechnique Fédérale de Lausanne

nachricht Carbon monoxide improves endurance performance
05.08.2020 | Universität Bayreuth

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Rare Earth Elements in Norwegian Fjords?

06.08.2020 | Earth Sciences

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>