Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Failed blood supply can lead to loose chips in joints

14.03.2008
Osteochondrosis, or so-called “joint mice”, is a very common illness of Norwegian horses, although its cause is as yet unknown. A recent Ph. D. degree by veterinary surgeon Kristin Olstad of the equine clinic of the Norwegian School of Veterinary Science concluded that failure of blood supply to the developing joint cartilage can lead to the development of the disease.

Osteochondrosis affects both people and a range of domestic animals including horses, cows, pigs and dogs. The disease is especially common among Norwegian horses, in particular warmblood, and can lead to the development of loose flakes within the joint. These loose pieces can cause irritation, causing the joint to swell and the horse to become lame.

The disease is usually treated by surgical removal of the loose pieces, a procedure that is associated with risk to the horse and expense for the owner. Osteochondrosis is heritable, and affected horses can be denied certification for breeding programs if the disease is discovered on x-ray.

It was established in the 1970’s that osteochondrosis arises in the so-called growth cartilage. This is specialised tissue that is only found in the long bones of the skeleton before an animal attains its mature size.

For many years it was thought that cartilage is a non-vascular tissue, that is, without its own blood supply. Olstad and a research team from the equine clinic have now, however, discovered and described a rich blood supply running in so-called cartilage canals. This blood flow is, however, time-limited, and in the case of the hock joint, it disappears at around the age of two months. This explains to a large degree why the blood supply to the cartilage has been so poorly described previously.

Using a microscope, Olstad and the research group showed an association between the earliest stages of osteochondrosis and a failure of the blood flow to the growth cartilage.

The cartilage canals are repeatedly forced to cross the boundary between bone and cartilage. Studies have shown the blood vessels in these vascular channels failed at precisely the point where they crossed from solid bone over into the softer growth cartilage.

Olstad and the research team discovered that when the blood flow failed, the cartilage cells around the cartilage canals died, since they no longer received the oxygen and nourishment they depended on. Small areas of dead growth cartilage became isolated as weakened points under the joint surfaces. Upon loading, these areas could develop cracks and loosen, causing loose flakes within the joint.

Kristin Olstad B. V. Sc. , Cert. V.R,., M.R.C.V.S. defended her Philosophiae Doctor thesis with the title “Cartilage Canals in the Pathogenesis of Osteochondrosis in Horses”, at the Norwegian School of Veterinary Science, on February 29, 2008.

Magnhild Jenssen | alfa
Further information:
http://www.veths.no/105/English/7899/Failed-blood-supply-can-lead-to-loose-chips-in-joints/

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

When AI and optoelectronics meet: Researchers take control of light properties

20.11.2018 | Physics and Astronomy

Researchers use MRI to predict Alzheimer's disease

20.11.2018 | Medical Engineering

How to melt gold at room temperature

20.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>