Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Paradoxical Alzheimer's Finding May Shed New Light on Memory Loss

13.03.2008
Do you remember the seventh song that played on your radio on the way to work yesterday? Most of us don’t, thanks to a normal forgetting process that is constantly “cleaning house” – culling inconsequential information from our brains. Researchers at the Buck Institute now believe that this normal memory loss is hyper-activated in Alzheimer’s disease (AD) and that this effect is key to the profound memory loss associated with the incurable neurodegenerative disorder.

Last year, this same group of researchers found that they could completely prevent Alzheimer’s disease in mice genetically engineered with a human Alzheimer’s gene—“Mouzheimer’s”—by blocking a single site of cleavage of one molecule, called APP for amyloid precursor protein. Normally, this site on APP is attacked by molecular scissors called caspases, but blocking that process prevented the disease.

Now they have studied human brain tissue and found that, just as expected, patients suffering from AD clearly show more of this cleavage process than people of the same age who do not have the disease. However, when they extended their studies to much younger people without Alzheimer’s disease, they were astonished to find an apparent paradox: these younger people displayed as much as ten times the amount of the same cleavage event as the AD patients. The researchers now believe they know why.

The Buck Institute study implicates a biochemical “switch” associated with that cleavage of APP, causing AD brains to become stuck in the process of breaking memories, and points to AD as a syndrome affecting the plasticity or malleability of the brain. The study, due to be published in the March 7 issue of the Journal of Alzheimer’s Disease, provides new insight into a molecular event resulting in decreased brain plasticity, a central feature of AD.

“Young brains operate like Ferraris – shifting between forward and reverse, making and breaking memories with a facility that surpasses that of older brains, which are less plastic,” said Dale Bredesen, MD, Buck Institute faculty member and leader of the research group. “We believe that in aging brains, AD occurs when the ‘molecular shifting switch’ gets stuck in the reverse position, throwing the balance of making and breaking memories seriously off kilter.”

In previous research, lead author Veronica Galvan, PhD, prevented this cleavage in mice genetically engineered to develop the amyloid plaques and deposits associated with AD. These surprising mice had normal memories and showed no signs of brain shrinkage or nerve cell damage, despite the fact that their brains were loaded with the sticky A-beta plaques that are otherwise associated with Alzheimer’s disease.

“A-beta is produced throughout the brain throughout life; we believe that it is a normal regulator of the synapses, the connections between neurons,” said Galvan, who added that AD, like cancer, is a disease in which imbalanced cell signaling plays an important role.

“The fact that many people develop A-beta plaques yet show no symptoms of AD tells us that the downstream signaling of A-beta—not just A-beta itself—is critical,” said Bredesen, “and these pathways can be targeted therapeutically. Simply put, we can restore the balance.” Continuing research at the Buck Institute focuses on nerve signaling and efforts to “disconnect” the molecular mechanism that throws memory-making in the reverse direction, as well as understanding mechanisms that support brain cell connections that are crucial to the process of memory making.

AD is an incurable neurodegenerative disease currently affecting 5.1 million Americans. AD results in dementia and memory loss, seriously affecting a person’s ability to carry out activities of daily living. AD costs the U.S. $148 billion annually, in addition to untold family suffering.

Joining Bredesen and Galvan as co-authors of the paper, “C-terminal cleavage of the amyloid precursor protein at Asp664: a switch associated with Alzheimer’s disease” are Surita Banwait, BA; Junli Zhang, MD; Olivia F. Gorostiza, Marina Ataie, BS; Wei Huang, BS; and Danielle Crippen, BA of the Buck Institute, as well as Edward H. Koo, MD, of the University of California, San Diego, Department of Neuroscience. The work was supported by the Joseph Drown Foundation, The National Institute on Aging, the Bechtel Foundation, and the Alzheimer’s Association.

Kris Rebillot | alfa
Further information:
http://www.buckinstitute.org

More articles from Health and Medicine:

nachricht Why might reading make myopic?
18.07.2018 | Universitätsklinikum Tübingen

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>