Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Joint research: Probing the mysteries of a surprisingly tough hydrogel

13.03.2008
Some 46 million people suffer from arthritis in the United States alone. The worst cases require painful surgeries to drill holes in and reinforce joints.

Now researchers working at the National Institute of Standards and Technology (NIST) are studying an unusually pliant yet strong synthetic cartilage replacement in hopes of providing arthritis victims with some relief.

In a paper* presented at the March Meeting of the American Physical Society, NIST scientists and colleagues from Hokkaido University in Japan, reported on a gel that, while having the pliancy of gelatin, won’t break apart even when deformed over 1,000 percent. By using NIST’s neutron research facility to show how the molecules in the gel sustain such large deformations, the research team hopes to make it easier to design materials with even better mechanical properties.

Known as double-network hydrogels, the incredible strength of these new materials was a happy surprise when first discovered by researchers at Hokkaido in 2003. Most conventionally prepared hydrogels—materials that are 80 to 90 percent water held in a polymer network—easily break apart like a gelatin. The Japanese team serendipitously discovered that the addition of a second polymer to the gel made them so tough that they rivaled cartilage—tissue which can withstand the abuse of hundreds of pounds of pressure. A combination of a brittle hydrogel and a soft polymer solution leads to a surprisingly tough material.

Initial work using NIST’s neutron scattering techniques to explore the structure of the gel found unexpected results. The two polymers** were attracted to each other—despite the fact that one polymer is negatively charged and the other neutral—and can withstand a certain force before they can be pulled apart. The total amount of force that can be endured by this polymer pair gets amplified enormously because there are many contacts along each long chain. Efficacy of stress transfer between the long added chain and gel network forms the cornerstone of the toughening mechanism in DN-gels.

The latest paper discusses a molecular-level toughening mechanism proposed based on neutron scattering measurements that gather, in detail, how the two polymers behave when the gel is deformed. Under deformation, these two polymers arrange themselves into an alternating, well-ordered, periodic pattern that is repeated approximately every 2 microns. This periodic structure is a hundred times larger than what is usually seen in molecules under deformation and its formation elegantly dissipates a large amount of deformation energy to stabilize the gel from crumbling apart.

Establishing the details of the molecular structure will allow for more precise design of the next generation of hydrogels that are tough and rigid at the same time. Real cartilage goes through a process of constant daily destruction and regeneration under everyday stresses; the researchers hope a good synthetic cartilage could endure year after year under the rigors of the body before needing to be replaced.

Michael Baum | EurekAlert!
Further information:
http://www.nist.gov

More articles from Health and Medicine:

nachricht Diverse amyloid structures and dynamics revealed by high-speed atomic force microscopy
04.08.2020 | Kanazawa University

nachricht New approach for targeted cancer immunotherapy
30.07.2020 | Universität Basel

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

Im Focus: NYUAD astrophysicist investigates the possibility of life below the surface of Mars

  • A rover expected to explore below the surface of Mars in 2022 has the potential to provide more insights
  • The findings published in Scientific Reports, Springer Nature suggests the presence of traces of water on Mars, raising the question of the possibility of a life-supporting environment

Although no life has been detected on the Martian surface, a new study from astrophysicist and research scientist at the Center for Space Science at NYU Abu...

Im Focus: Manipulating non-magnetic atoms in a chromium halide enables tuning of magnetic properties

New approach creates synthetic layered magnets with unprecedented level of control over their magnetic properties

The magnetic properties of a chromium halide can be tuned by manipulating the non-magnetic atoms in the material, a team, led by Boston College researchers,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

First radio detection of an extrasolar planetary system around a main-sequence star

04.08.2020 | Physics and Astronomy

The art of making tiny holes

04.08.2020 | Physics and Astronomy

Early Mars was covered in ice sheets, not flowing rivers

04.08.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>